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1 Random Functions
Let (Ω,F ,P) be a probability space, (C, C) the space of all continuous functions on [0, 1]

equipped with the sup norm, and let X map Ω into C. For any ω ∈ Ω, X(ω) is a continuous
function in C. Therefore, X is called a random function.

Define a mapping w : C × R+ → R+ by

w(x; δ) = sup
|s−t|≤δ

|x(s)− x(t)|.

Note that fixing any δ > 0, the map w(·; δ) : C → R+ is a continuous mapping.

Theorem 1 (Arzela-Ascolí): A subset A of C is relatively compact if and only if
the set is

(i) bounded at one point: supx∈A |x(0)| < ∞.

(ii) uniformly equicontinuous: For any ϵ > 0, there exists δ > 0 such that for all
x ∈ A and |t− s| < δ,

|x(t)− x(s)| < ϵ.

Or, alternatively,
lim
δ→0

sup
x∈A

w(x; δ) = 0.

The following result gives a necessary and sufficient condition for a sequence of prob-
ability measures {µn} on (C, C) to be tight, and thus relatively compact by Prohorov’s
Theorem.

Theorem 2: The sequence {µn} is tight if and only if these two conditions hold:
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(i) For each positive η, there exists an a and an n0 such that

µn(x : |x(0)| ≥ a) ≤ η, n ≥ n0.

(ii) For each positive ϵ and η, there exists 0 < δ < 1 and an n0 such that

µn(x : w(x; δ) ≥ ϵ) ≤ η, n ≥ n0.

This can be put in a more compact form:

lim
δ→0

lim sup
n→∞

µn(x : wx(δ) ≥ ϵ) = 0.

Proof. Suppose {µn} is tight. Given η, choose a compact K such that µn(K) ≥ 1−η. Then
by Arzela-Ascolí, there exists a such that K ⊂ {x : |x(0)| < a}, and also δ > 0 such that
K ⊂ {x : w(x; δ) < ϵ}. Hence, these two inqualities hold.

Now suppose the two inqualities hold. Fix η > 0. Since a single probability measure
is tight, it satisfies the two inequalities for some a and δ. So, without loss of generality,
we may assume that n0 = 1 by increasing a or decreasing δ. Choose a so that the set
B = {x : |x(0)| ≤ a} has probability µn(B) > 1− η for all n. Then for each k, choose δk so
that Ak = {x : w(x, δk) < 1/k} has probability µn(Ak) > 1− η/2k for all n. Now consider
the set A = B ∩

⋂
k≥1 Ak. We have µn(A) ≥ 1 − 2η for all n. Moreover, A is relatively

compact, and thus A is compact with µn(A) ≥ 1− η.

Now for each random function X, let µX = PX−1, the distribution over C induced by
X. Also, choose any t1, ..., tk ∈ [0, 1], (X(t1), ..., X(tk)) is a random vector that takes values
in Rk.

Let {Xn} be a sequence of random functions. We write Xn ⇒ X if µn = µXn
⇒ µ = µX .

The following result associates the weak convergence of random vectors with the weak
convergence of random functions.

Theorem 3: Xn ⇒ X if and only if

(i) (Xn(t1), Xn(t2), ..., Xn(tk)) ⇒ (X(t1), X(t2), ..., X(tk)) for all t1, ..., tk ∈ [0, 1].

(ii) limδ→0 lim supn→∞ µn(x : wx(δ) ≥ ϵ) = 0.

Proof. Suppose (i) and (ii) holds. By Prohorov’s Theorem and the fact that the collection
of finite dimensional sets is a separating class, it suffices to prove that {µn} is tight. Now
by (i), the sequence of probability measures {µnπ

−1
0 } on R converges weakly to µπ−1

0 , and
therefore condition (i) in Theorem 2 holds. Together with (ii), we have shown that {µn} is
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tight. The opposite direction is obvious.

Theorem 4: Suppose that 0 = t0 < t1 < ... < tv = 1 and

min
1<i<v

(ti − ti−1) ≥ δ.

Then for arbitrary x,

wx(δ) ≤ 3 max
1≤i≤v

sup
ti−1≤s≤ti

|x(s)− x(ti−1)|,

and for arbitrary probability measure µ,

µ(x : wx(δ) ≥ 3ϵ) ≤
v∑

i=1

µ

(
x : sup

ti−1≤s≤ti

|x(s)− x(ti−1)| ≥ ϵ

)
(1)

Remark: Note that it is not required that tv − tv−1 < δ in this theorem. This is crucial
when we use this theorem to prove Lemma 1.

2 Wiener Measure

Notation

A projection πt defined by πt(x) = x(t) is a random variable from (C, C, µ) to (R,R).
Exploiting notation, we will later write xt := πt. Think of t ∈ [0, 1] as time. Then,
{xt : t ∈ [0, 1]} is a stochastic process whose underlying probability space is (C, C, µ).
Namely, once x ∈ C is determined, the whole process is determined, and takes the value
πt(x) = x(t). For any sequence of times {tk}, {xk} := {xtk} is a stochastic process. Similarly,
once x is determined, the whole sequence {xk} is determined.

2.1 The Wiener Measure

The Wiener measure, denoted by W , is a probability measure on (C, C), that satisfies the
two conditions

(i) For each t ∈ [0, 1],
W (xt ≤ α) =

1√
2πt

∫ α

−∞
e−α/2t du.

(ii) For any 0 ≤ t1 ≤ t2 ≤ ... ≤ tk = 1, the random variables

xt2 − xt1 , xt3 − xt2 , ..., xtk − xtk−1
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are independent under W .

If these two conditions hold, for any t > s, we have xt = xs + (xt − xs) where xs and
xt − xs are independent. Therefore, by dividing the characteristic function of xt by the
characteristic function of xs, we get the distribution of xt − xs.

(iii) For any t > s,
W (xt − xs) =

1√
2π(t− s)

=

∫ α

−∞
e−α/2(t−s) du.

Theorem 5 (Existence of Wiener Measure): There exists a probability measure
on (C, C) that satisfies the above properties.

Remark: Such measure is unique because the collection of finite dimensional sets in C is a
separating class.

Now let W denote not only the probability measure on (C, C), but also any random
function that has W as its distribution. Write Wt = W (t) = πt ◦W . Then the properties
(i)-(iii) can be rewritten as

(i) For each t ∈ [0, 1],
Wt ∼ N (0, t).

(ii) For any 0 ≤ t1 ≤ t2 ≤ ... ≤ tk = 1,

Wt1 −Wt2 ,Wt2 −Wt1 , ...,Wtk −Wtk−1

are independent.

(iii) For any t ≥ s,
Wt −Ws ∼ N (0, t− s).

Or putting in another way, for any t1 ≤ t2 ≤ ... ≤ tk, (W0,W1, ...,Wk) is jointly normal
with distribution (N1, N1 +N2, ..., N1 + ...+Nk) where Nj ∼ N (0, tj − tj−1) and Nj ’s are
independent.

2.2 Construction of Wiener Measure

Our goal is to construct a sequence of random functions {Y n} that is tight and has the
described finite dimensional properties in the limit: for any t1 < t2 < t3 < ... < tk,

(Y n
t1 , ..., Y

n
tk
) ⇒ (N1, N1 +N2, ..., N1 + ...+Nk),

where Nj ∼ N (0, tj − tj−1) and Nj ’s are independent.
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We start with a sequence of i.i.d. random variables ξ1, ..., ξn with mean 0 and finite
variance σ on the same probability space. Let Sn = ξ1 + ... + ξn, and define Y n in the
following way:

Y n(t) =
1

σ
√
n
S⌊nt⌋ + (nt− ⌊nt⌋) 1

σ
√
n
ξ⌊nt⌋+1 (2)

for all t ∈ [0, 1]. The idea is simple. Fixing n, first we partition [0, 1] into n − 1 equal
segments with n endpoints 0 < 1/n < 2/n < ... < (n− 1)/n < 1. Then we set

Y n

(
j

n

)
=

1

σ
√
n
Sj .

Next, for any t between the endpoints j−1
n and j

n , say t = (j + a)/n, where a < 1, we take
the convex combination of the values at the endpoints:

Y n(t) = aY n

(
j + 1

n

)
+ (1− a)Y n

(
j

n

)
.

The rightmost term in Equation 2 converges to 0. On the other hand, since ⌊nt⌋/(nt) → 1,
by Lindeberg’s CLT,

S⌊nt⌋√
nσ

=
√
t
S⌊nt⌋√
ntσ

⇒
√
tN,

where N is the standard normal distribution. We conclude that for all t ∈ [0, 1],

Y n
t = Y n(t) ⇒ N(0, t).

Similarly, for any t > s, when considering the asymptotic distribution of (Y n
s , Y n

t −Y n
s ), we

only have to consider the asymptotic distribution of(
1

σ
√
n
S⌊ns⌋,

1

σ
√
n
(S⌊nt⌋ − S⌊ns⌋)

)
,

which again by Lindeberg’s CLT is
(N1, N2)

where N1 ∼ N (0, t), N2 ∼ N (0, t − s), and N1, N2 are independent. By the continuous
mapping theorem, we conclude that

(Y n
s , Y n

t ) ⇒ (N1, N1 +N2).

Using the same method (but with more notation), we can prove that for any t1 < t2 < t3 <

Page 5 of 10



... < tk,
(Y n

t1 , Y
n
t2 , ..., Y

n
tk
) ⇒ (N1, N1 +N2, ..., N1 + ...+Nk),

where N1 ∼ N (0, t1) and Nk ∼ N (0, tk − tk−1).
Now all we need is to prove that {Y n} defined by Equation 2 is tight. We will make use

of the following lemma:

Lemma 1: Let {ξn} be stationary (fixing j, (ξk, ..., ξk+j) has the same distribution
for all k) and suppose that Y n is defined by Equation 2. If

lim
λ→∞

lim sup
n→∞

λ2 P(max
k≤n

|Sk| ≥ λσ
√
n) = 0, (3)

then {Y n} is tight.

Proof. We make use of Theorem 2. Since Y n
0 = 0 for all n, condition (i) of Theorem 2 holds.

Now condition (ii) of Theorem 2 translates into

lim
δ→0

lim sup
n→∞

P(w(Xn; δ) ≥ ϵ) = 0.

For any n and δ, we shall find a suitable way of choosing m, v ∈ N and set ti = i(m/n)

for 0 ≤ i ≤ v − 1 so that we can use Equation 1 in Theorem 4. The requirements are (i)
ti − ti−1 > δ for 1 ≤ i ≤ m − 1 and (ii) tv = 1. This means that we need (i) m ≥ nδ and
(ii) m(v − 1) < n ≤ mv. Hence, we set

m = ⌈nδ⌉, v =

⌈
n

m

⌉
.

Write mi = m× i for 0 ≤ i ≤ v − 1 and mv = n.

P(w(Xn; δ) ≥ 3ϵ) ≤
v∑

i=1

P
(

sup
ti−1≤s≤ti

|Xn(s)−Xn(ti−1)| ≥ ϵ

)

≤
v∑

i=1

P
(

max
mi−1≤k≤mi

|Sk − Smi−1 |
σ
√
n

≥ ϵ

)
= v P

(
max
k≤m

|Sk| ≥ ϵσ
√
n

)
.

The first line holds by Theorem 4. The second line holds by the construction of Xn: for
s ∈ [0, 1] that is not an endpoint, Xn(s) is defined to be the convex combination of the
endpoints nearby. The third line holds from the fact that X1, ..., Xn are i.i.d. For large n,

v −→ 1

δ
<

2

δ
,

n

m
−→ 1

δ
>

1

2δ
.
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For any ϵ > 0, write
λ =

ϵ√
2δ

.

Then we have

v P
(
max
k≤m

|Sk| ≥ ϵσ
√
n

)
≤ 2

δ
P
(
max
k≤m

|Sk| ≥
ϵ√
2δ

σ
√
m

)
=

4λ2

ϵ2
P
(
max
k≤m

|Sk| ≥ λσ
√
m

)
.

Finally,

lim
δ→0

lim sup
n→∞

P(w(Xn; δ) ≥ ϵ) ≤ lim
δ→0

lim sup
m→∞

4λ2

ϵ2
P
(
max
k≤m

|Sk| ≥ λσ
√
m

)
=

4

ϵ2
lim
λ→∞

lim sup
m→∞

λ2 P
(
max
k≤m

|Sk| ≥ λσ
√
m

)
= 0

where the last equality follows from the assumption.

By our construction, ξn’s are i.i.d., and hence the first condition of the lemma holds. Now
we can choose any {ξn} that is convenient to check that the second condition Equation 3
holds. Since ξn’s are i.i.d., by Etamadi’s Inequality, we have

P(max
k≤n

|Sk| > α) ≤ 3max
k≤n

P(|Sk| ≥ α/3).

Hence, it suffices to choose {ξn} such that

lim
λ→∞

lim sup
n→∞

λ2 max
k≤n

P(|Sk| ≥ λσ
√
n) = 0. (4)

Choose ξn’s to be N (0, 1). Then

max
k≤n

P(|Sk| ≥ λσ
√
n) = P

(∣∣∣∣ Sn√
n

∣∣∣∣ ≥ λ

)
= 2(1− Φ(λ)).

But we know that
lim
λ→∞

λ2(1− Φ(λ)) = 0,

and therefore Equation 4 holds. We have thus proved the existence of the Wiener measure.
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3 Donsker’s Theorem

Theorem 6 (Donsker): If ξ1, ..., ξn are i.i.d. with mean 0 and finite variance σ2,
and if Y n is the random function defined by Equation 2, then Y n ⇒ W .

Proof. In the construction of Wiener measure, we have showed that the finite dimensional
distribution of Y n converges to the finite dimensional distribution of W . Hence, it suffices
to prove that {Y n} is tight. We have showed that under the additional assumption ξn’s
are normally distributed, then {Y n} is tight. For general {ξn}’s, when giving an upper
bound to maxk≤n P(|Sk| ≥ λσ

√
n), we can use the Central Limit Theorem for large k’s and

Chebyshev’s Inequality for small k’s. Fix λ > 0. By Central Limit Theorem, there exists
kλ such that for all kλ < k < n,

P(|Sk| ≥ λσ
√
n) ≤ P(|Sk| ≥ λσ

√
k) = P

(∣∣∣∣ Sk√
kσ

∣∣∣∣ ≥ λ

)
≤ 3(1− Φ(λ)).

For k < kλ, by Chebyshev’s Inequality,

P(|Sk| ≥ λσ
√
n) ≤ Var(Sk)

nσ2λ2
≤ kλ

nλ2
.

Therefore,

lim sup
n→∞

λ2 max
k≤n

P(|Sk| ≤ λσ
√
n) ≤ lim sup

n→∞

(
max

(
kλ
n
, 2λ2Φ(λ)

))
= 3λ2(1− Φ(λ)),

and since
lim
λ→∞

λ2(1− Φ(λ)) = 0,

Equation 4 holds. We conclude that {Y n} is tight.

3.1 An application of the Donsker’s Theorem

Let ξn’s be i.i.d. and write Sn = ξ1 + ...+ ξn and S0 = 0. In this section, we use Donsker’s
Theorem to find the limiting distribution of

Mn = max
0≤i≤n

Sn.

Let {Y n} be defined by Equation 2. Then clearly,

sup
t∈[0,1]

Y n(t) =
Mn

σ
√
n
.
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Therefore, by Donsker’s Theorem and the Continuous Mapping Theorem (because the func-
tion π∗ : C → R defined by π∗(x) = supt∈[0,1] x(t) is a continuous function on C),

Mn

σ
√
n
⇒ sup

t∈[0,1]

W (t).

Therefore, we have to find the distribution of supt∈[0,1] W (t).
Our strategy is to find a sequence of i.i.d. ξi’s that we know the asymptotic distribution

of Mn/σ
√
n = supt∈[0,1] Y

n(t). Then by Donsker’s Theorem and Continuous Mapping
Theorem, this asymptotic distribution is exactly the distribution of supt∈[0,1] W (t). We
choose ξ’s to take values with 1 and −1 with probability 1/2 for both. Setting S0 = 0.
Therefore, Sn is the position of a symmetric random walk after the nth step with initial
position 0. Note that when a < 0, since S0 = 0, P(Mn ≥ a) = 1. We now prove that for
any a ≥ 0,

P(Mn ≥ a) = 2P(Sn > a) + P(Sn = a). (5)

When a = 0, P(Mn ≥ a) = 1. Also, P(Sn > 0) = P(Sn < 0). Therefore, we have

P(Mn ≥ 0) = 1 = P(Sn > 0) + P(Sn < 0) + P(Sn = 0) = 2P(Sn > 0) + P(Sn = 0).

Now assume a > 0.

P(Mn ≥ a)− P(Sn = a) = P(Mn ≥ a, Sn > a) + P(Mn ≥ a, Sn < a).

But P(Mn ≥ a, Sn > a) = P(Sn > a), so it suffices to prove that

P(Mn ≥ a, Sn < a) = P(Mn ≥ a, Sn > a).

There are 2n possible paths each with the same probability. If we can prove that the
number of paths in the event {Mn ≥ a, Sn < a} and {Mn ≥ a, Sn > a} are the same, then
the equality holds. Given a path in {Mn ≥ a, Sn > a}, match it with the path obtained by
reflecting through a all the partial sums after the one that first achieves a. This describes a
one-to-one correspondence between paths in the two events. In Figure 1, the solid path in
the event {Mn ≥ a, Sn > a} is matched with the dashed path in {Mn ≥ a, Sn < a}.

Now take a =
√
nσα =

√
nα (Var(ξi) = 1) where α ≥ 0. In Equation 5, the right-most

term converges to 0. And so by CLT,

P(Mn ≥
√
nα) = 2P(Sn >

√
nα) −→ 2P(N > α)
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Figure 1: Reflection Principle

where N is standard normal. Finally, we can conclude that for each α ≥ 0,

P
(

sup
t∈[0,1]

Wt ≤ α

)
= P(−α < N < α) = 2P(0 < N < α).

And when α < 0,

P
(

sup
t∈[0,1]

Wt ≤ α

)
= 0,

since by definition, W0 ≡ 0.

Theorem 7: Let ξ1, ..., ξk be i.i.d. with mean 0 and finite variance σ2. Let S0 = 0,
Sk = ξ1 + ...+ ξk for k ≥ 1. Define

Mn = sup
0≤k≤n

Sk.

Then for all t ≥ 0,

P
(

Mn√
nσ

≤ α

)
−→ P

(
sup

t∈[0,1]

Wt ≤ α

)
= 2P(0 < N < α),

where N is the standard normal. That is, the asymptotic distribution of Mn/
√
nσ

follows the folded normal law.
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