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Notation
For an experiment (X ,F , {Pθ}θ∈Θ), X represents the sample space, F the σ-algebra of events
and Θ the parameter space. For a probability measure λ defined on F , we write Eλ[Y ] to
represent the expectation of a random variable Y . As for a candidate probability measure
Pθ in an experiment, we simply write Eθ[Y ] instead of EPθ

[Y ].

1 Introduction
In statistics, we often summarize what we see from the whole sample. For example, suppose
we are estimating the expectation of some distribution, we often report the sample mean as
a summary of the whole sample. However, information about the parameter may be lost
along the summarizing process. Ways of summarizing the data without losing information
about the parameter are called sufficient statistics. In other words, to infer the parameter,
it is sufficient to see the summary rather than the entire sample.

2 Definition of Sufficient Statistic
Let {X ,F , {Pθ}θ∈Θ} be a statistical experiment generated by the sample X. A statistician’s
job is to estimate the true θ0 ∈ Θ after observing X. In this note, we assume that all Pθ are
dominated by some measure µ on F with p.d.f. f(· | θ).

Definition 2.1 (Sufficient Statistic): Let T : (X ,F) → (T ,G) be a measurable
map defined on the sample space. If Pθ(· |T ) does not depend on θ, then we say T is
a sufficient statistic for θ.
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T contains all available information concerning θ. At first sight, the condition listed
in Definition 2.1 seems quite strange. To gain more intuition, we temporarily shift to the
Bayesian paradigm. Suppose θ is a random variable with prior distribution π. Then Defini-
tion 2.1 basically says that given T , then X and θ are independent.

θ ⊥⊥ X | T.

Suppose a statistician observes the sample X = x. Summarizing the sample with a sufficient
statistic T , the statistician gives a summary t = T (x). Assume that given any θ ∈ Θ, T has
a p.d.f. g(· | θ). The posterior distribution of θ is

π(θ | x) = π(θ)f(x | θ)∫
θ∈Θ π(θ)f(x | θ) dθ

=
π(θ)f(x | t, θ)g(t | θ)∫

θ∈Θ π(θ)f(x | t, θ)g(t | θ) dθ

=
π(θ)f(x | t)g(t | θ)

f(x | t)
∫
θ∈Θ π(θ)g(t | θ) dθ

(by Definition 2.1)

= π(θ | t).

This means that the statistician will end up with the same posterior distribution of θ if he
didn’t see x but only saw t = T (x) in the first place.

It is often tedious to distinguish a sufficient statistic by explicitly checking the definition.
This can be seen in the following simple example. Let the sample X consists of n i.i.d.
observations X1, ..., Xn. The order statistic of X, T (x1, ..., xn) = (t1, ..., tn) with t1 ≤ t2 ≤
... ≤ tn is a sufficient statistic. However, checking this fact is indeed quite tedious.

Example 2.1: Suppose X1, ..., Xn are i.i.d. with a distribution dominated by the
Lebesgue measure with p.d.f. f(xi | θ). A sample x = (x1, ..., xn) ∈ X = Rn con-
sists of the realizations of X1, ..., Xn. The order statistic, rearranging x1 to xn from
small to large, T (x) = (t1, ..., tn), is a sufficient statistic.

Proof. It is equivalent to proving that for any L1 map ϕ : X → R, Eθ[ϕ |T ] does not depend
on θ. Write T = (T1, ..., Tn). Define for any (x1, ..., xn) ∈ X the L1 random variable H,

H(x1, ..., xn) =
1

n!

∑
ϕ(xj1 , ..., xjn)

where the sum is taken over all permutations (j1, ..., jn) of {1, 2, 3, ..., n}. One can easily
see that H can be written as a measurable function of T , and thus H ∈ L1(X , σ(T ),Pθ).
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We show that H = Eθ[ϕ |T ]. It then suffices to prove for any non-negative bounded map
ψ : Rn → R,

Eθ[Hψ(T )] = Eθ[ϕψ(T )].

Note that for any (x1, ..., xn) ∈ X and permutation (j1, ..., jn),

T (x1, ..., xn) = T (xj1 , ..., xjn).

Therefore,

Eθ[Hψ(T )] =
1

n!

∑∫
Rn

ϕ(xj1 , ..., xjn)ψ(T (x1, ..., xn))
n∏

i=1

f(xi | θ) d(x1, ..., xn)

=
1

n!

∑∫
Rn

ϕ(xj1 , ..., xjn)ψ(T (xj1 , ..., xjn))
n∏

i=1

f(xji | θ) d(x1, ..., xn)

=
1

n!
n!

∫
Rn

ϕ(x1, ..., xn)ψ(T (x1, ..., xn))
n∏

i=1

f(xi | θ) d(x1, ..., xn)

= Eθ[ϕψ(T )].

Since H = Eθ[ϕ |T ] does not depend on θ, the proof is done.

3 Characterization of Sufficient Statistic
Fortunately, we do have a theorem that helps us identify sufficient statistics when {Pθ}θ∈Θ
is dominated by a σ-finite measure. It is called the Factorization Theorem, and was
first proposed by Fisher and Neyman. Before stating and proving the theorem, we need a
preliminary result.

Lemma 1: Let (X ,F , {Pθ}θ∈Θ) be an experiment with {Pθ}θ∈Θ being dominated by a
σ-finite measure µ. Then there exists a countable subset of Θ, {θi}i∈N, and a sequence
of positive numbers {ci}i∈N with

∑
i∈N ci = 1 such that the probability measure λ =∑

i∈N ciPθi dominates all Pθ.

Proof. Write P = {Pθ}θ∈Θ. It is without loss of generality to assume that µ is a finite
measure, since if P is dominated by a σ-finite measure, it must be dominated by a finite
measure. Let Λ be the collection of probability measure that can be written as

∑
i∈N ciPi for

some countable {Pi} ⊂ P and positive ci’s such that
∑

i∈N ci = 1. It suffices to prove that
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there exists λ∗ ∈ Λ such that λ∗ dominates all λ ∈ Λ. Define the collection of sets

A :=

{
A ∈ F : ∃λ ∈ Λ such that λ(A) > 0 and dλ

dµ
> 0 a.e. µ on A.

}
There exists a sequence {Ai}i∈N ∈ A such that

µ(Ai) → sup
A∈A

µ(A).

Write A∗ =
∪

i∈NAi and λ∗ =
∑

i∈1 2
−iλi where each λi corresponds to Ai. One can check

that λ∗ ∈ Λ and that λ∗(A∗) > 0 with dλ∗/dµ > 0 a.e. µ on A∗. This then implies that
A∗ ∈ A. Now let E ∈ F such that λ∗(E) = 0 and λ ∈ Λ. The fact that λ∗(E) = 0

implies that µ(A∗ ∩ E) = 0. If λ(E) > 0, then there exists E ′ ⊂ E and E ′ ∈ A. But
then A∗ ∪ E ′ ∈ A and µ(A∗ ∪ E ′) = µ(A∗) + µ(E ′) > µ(A∗), contradicting that fact that
µ(A∗) = supA∈A µ(A).

Theorem 1 (Factorization Theorem): Let (X ,F , {Pθ}θ∈Θ) be an experiment and
{Pθ}θ∈Θ be dominated by a σ-finite measure µ. Then T : (X ,F) → (T ,G) is a sufficient
statistic if and only if there exists measurable functions {gθ}θ∈Θ defined on (T ,G) and
h defined on (X ,F) such that

f(x | θ) = gθ(T (x))h(x).

Proof. By Lemma 1, there exists λ =
∑

i∈N ciPθi that dominates all Pθ in {Pθ}θ∈Θ.
Assume that T is sufficient for θ. We show that the Radon-Nikodym derivative of Pθ for

(F , λ) can be written as a measurable function of T , gθ(T ). If this is established, by writing
h as the derivative for (F , µ), we have for all θ ∈ Θ,

f(x | θ) = dPθ

dλ

dλ

dµ
= gθ(T (x))h(x).

Indeed, for any θ, there exists a measurable function gθ defined on (T ,G) such that gθ(T ) is
the derivative of Pθ for (σ(T ), λ). We show that gθ(T ) is also the derivative of Pθ for (F , λ).
Let A ∈ F and A0 ∈ σ(T ). Since T is sufficient, Pθ(A |T ) = P (A |T ) does not depend on θ.
Note that for any θ, ∫

A0

P(A |T ) dPθ = Eθ[Eθ[1A |T ]1A0 ]

= Eθ[1A 1A0 ] = Pθ(A ∩ A0).
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Hence, ∫
A0

P(A |T ) dλ =
∑
i∈N

ci

∫
A0

P(A |T ) dPθi

=
∑
i∈N

ciPθi(A ∩ A0) = λ(A ∩ A0).

This means that P(· |T ) also serves as the conditional probability for λ. Now let A ∈ F and
θ ∈ Θ.

Pθ(A) = Eθ[1A] = Eθ[P (A |T )]

=

∫
X
P (A |T ) dPθ

=

∫
X
P (A |T )gθ(T ) dλ (because P (A |T ) is σ(T )-measurable)

=

∫
X

Eλ[1A |T ]gθ(T ) dλ (by the observation above)

=

∫
A

gθ(T ) dλ.

Assume conversely that there is such gθ and h that satisfies

f(x | θ) = gθ(T (x))h(x).

We have
dλ

dµ
=
∑
i∈N

cigθi(T )h = k(T )h.

It then follows that

dPθ

dλ
(x) = g∗θ(T (x)) =

gθ(T (x))/k(T (x)) when k(T (x)) > 0,

anything otherwise.

We now prove that Pλ(· |T ) serves as the conditional probability for all Pθ. For any A0 ∈
σ(T ) and θ ∈ Θ, ∫

A0

Pλ(A |T ) dPθ =

∫
A0

Eλ[1A |T ]g∗θ(T ) dλ

=

∫
A0

Eλ[1A g
∗
θ(T ) |T ] dλ

=

∫
A∩A0

g∗θ(T ) dλ = Pθ(A0 ∩ A).
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Example 3.1 (Uniform Distribution): Suppose X1, X2, ..., Xn are i.i.d. with uni-
form distribution U [l, u]. θ = (l, u) and set Θ = {(l, u) ∈ R2 : l < u}. A sample
x = (x1, ..., xn) consists of the realizations of X1, .., Xn. T (x) = (min xi,max xi) is a
sufficient statistic.

Proof. Observe

f(x | l, u) =

 1
(u−l)n

if l ≤ min xi ≤ max xi ≤ u

0 otherwise.

= (u− l)−n 1{l ≤ min xi ≤ max xi ≤ u}.

Using Theorem 1, by setting,

gθ(T (x)) = (u− l)−n 1{l ≤ min xi ≤ max xi ≤ u}

h(x) = 1,

we know that (min xi,max xi) is a sufficient statistic.

Example 3.2 (Normal Distribution): Suppose X1, X2, ..., Xn are i.i.d. with normal
distribution N (µ, σ2). θ = (µ, σ2) and set Θ = {(µ, σ) ∈ R2 : σ > 0}. A sample
x = (x1, ..., xn) consists of the realizations of X1, .., Xn. T (x) = (x, s2) where

x =
1

n

n∑
i=1

xi,

s2 =
1

n

n∑
i=1

(xi − x)2.

is a sufficient statistic.

Proof. Use the relationship

n∑
i=1

(xi − µ)2 = ns2 + n(x− µ)2,
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we obtain

f(x |µ, σ) = (
√
2πσ)−n exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)

= (
√
2πσ)−n exp

(
− 1

2σ2
(ns2 + n(x− µ)2)

)
.

Using Theorem 1, by setting,

gθ(T (x)) = (
√
2πσ)−n exp

(
− 1

2σ2
(ns2 + n(x− µ)2)

)
h(x) = 1,

we know that T (x) = (x, s2) is a sufficient statistic.

Example 3.3 (Poisson Distribution): Suppose X1, , , , ., Xn are i.i.d. with Poisson
distribution Poisson(λ). θ = λ and Θ = (0,∞). A sample x = (x1, ..., xn) consists
of the realizations of X1, ..., Xn. X = {0, 1, 2, ...} and each Pθ is dominated by the
uniform measure on X . T (x) = x is a sufficient statistic.

Proof. Observe

f(x |λ) =
n∏

i=1

λke−k

k!
= λnxe−λ(

n∏
i=1

xi!).

Using Theorem 1, by setting

gθ(T (x)) = λnxe−λ

h(x) =
n∏

i=1

xi!,

we know that T (x) = x is a sufficient statistic.

4 Sufficiency Principle
Since sufficient statistic summarizes the sample without loss of information about the pa-
rameter, it is reasonable to require that inferences should depend only on sufficient statistics.
This is the so-called Sufficiency Principle.
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Sufficiency Principle: Let {X ,F , {Pθ}θ∈Θ} be an experiment and T be a sufficient
statistic for θ. Then inferences about θ should depend only on T . Namely, if two
samples x and y satisfy T (x) = T (y), then they should lead to the same inference on
θ.

The Sufficiency Principle can be justified in two ways: Fisher’s thought experiment
and Rao-Blackwell Theorem.

Fisher’s thought experiment proceeds as follows. Consider an experiment (X ,F , {Pθ}θ∈Θ)
and two statisticians, Fisher and Neyman, aiming to estimate θ. After the experiment is
conducted, Fisher sees the whole sample x ∈ X , while Neyman only sees the sufficient
statistic t = T (x). Neyman then uses the sufficient statistic t = T (x) and a randomization
device to generate a new sample Y ∈ X with the distribution P(· | t). Note that Neyman
doesn’t need to know θ to compute Pθ(· | t) by the definition of sufficient statistic.

At first glance, Neyman is running a different experiment than Fisher. However, these
two experiments are equivalent in the sense that, given any θ, X and Y have the same
unconditional probability. This means that Neyman has just as much knowledge about θ as
Fisher. Let us write Neyman’s experiment as (X ,F , {P′

θ}θ∈Θ).

Proposition 1: For all θ ∈ Θ, Pθ = P′
θ.

Proof. By the process that Y is generated, for any A ∈ F ,

P′
θ(A |T ) = P(A |T ) = Pθ(A |T ).

Therefore,

P′
θ(A) =

∫
A

P′
θ(A |T (x)) dPθ(x)

=

∫
A

Pθ(A |T (x)) dPθ(x)

= Pθ(A).

If Fisher uses method I to infer on θ from X = x, Neyman can also use the same
method, since he is running an experiment which brings just as much information about θ as
the original one. Moreover, it is expected that I(x) = I(y) because X and Y have the same
probability distribution given any θ. Namely, method I should satisfy Sufficiency Principle.
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The other way of justifying the Sufficiency Principle is from a decision-theoretic point of
view. Let δ : X → Θ denote an estimator for θ and let L(δ; θ) denote the loss incurred when
we estimate θ with δ. L : Θ×Θ → R+ is called the loss function of estimating θ.

Assume Θ ⊂ Rk. We say that the loss function L is convex if L(δ; θ) is of the form
l(δ − θ) with l(·) being convex on Rk. Rao-Blackwell Theorem says that under a convex
loss, any estimator δ is dominated by an estimator δ∗ which is a function of T . Also, if δ is
unbiased, then δ∗ can be chosen to be unbiased.

Theorem 2 (Rao-Blackwell): Let (X ,F , {Pθ}θ∈Θ) be an experiment and T a suf-
ficient statistic. Suppose Θ ⊂ Rk and the loss function L is convex. Let δ be an
estimator for θ. Then for any θ ∈ Θ,

Eθ[L(δ
∗; θ)] ≤ Eθ[L(δ; θ)],

where δ∗ = Eθ[δ |T ] = E[δ |T ].

Proof. Since T is sufficient, Eθ[δ |T ] is the same across all θ and is written as E[δ |T ]. Fix
θ ∈ Θ,

Eθ[L(δ; θ)] = Eθ[l(δ − θ)]

= Eθ[Eθ[l(δ − θ) |T ]]

≥ Eθ[l(Eθ[δ − θ |T ])]

= Eθ[l(Eθ[δ |T ]− θ)]

= Eθ[l(δ
∗ − θ)] = Eθ[L(δ

∗; θ)].

The inequality in the middle holds by Jenson’s Inequality for conditional expectations. It is
easy to see that if δ is unbiased, then δ∗ is also unbiased.

5 Short History of Sufficient Statistic
The concept of sufficient statistic is first proposed by R.A. Fisher in his paper, On the
mathematical foundations of theoretical statistics, in 1920. Two years later, he established the
factorization condition as a sufficient condition for sufficient statistics. Years later, Neyman
demonstrated, under certain conditions, the factorization condition also serves as a necessary
condition for sufficient statistics in 1935. The general factorization theorem (Theorem 1)
posed in this note is proposed and proved by Halmos and Savage in their paper, Application
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of the Radon-Nikodym theorem to the theory of sufficient statistics, in 1949.
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