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1 Introduction
Originally, martingale referred to a class of betting strategies popular in 18th-century France.
The strategy had the gambler double their bet after every loss so that the first win would
recover all previous losses plus win a profit equal to the first bet. In mathematics, the term
martingale later came to refer to a class of stochastic processes. Part of the motivation of
developing the martingale theory is to prove that there is no betting strategy (including the
one described above) that allows a gambler to beat a fair game. The theory has been applied
across various scientific disciplines, and is often praised for its generality and elegance.

2 Definition of Martingale

Definition 1 (Filtration): We say that a sequence of sub-σ-algebras {Fn}mn=1 defined
over a probability space (Ω,F ,P) is a filtration if Fn ⊂ Fn+1 for any 1 ≤ n ≤ m. If the
sequence is infinite, then we simply set m = +∞. In this note, the notation {Fn}n≥1

and {Fn}∞n=1 is equivalent.

A filtration represents a gambler’s information after the nth round of play. The require-
ment that Fn ⊂ Fn+1 means that the gambler’s information increases over time. Next we
model the fortune of the gambler over time. After the nth round of play, the gambler knows
his fortune, and therefore his information at time n, Fn, should contain such information.
This leads us to the notion of adapted sequence.

Definition 2 (Adapted sequence): Let {Xn}mn=0 be a sequence of random variables
defined on a probability space (Ω,F ,P). {Xn}mn=0 is said to be adapted to the filtration
{Fn}mn=0 if Xn is Fn−measurable. We will call {Xn,Fn}mn=0 an adapted sequence.
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Definition 3 (Martingale): An adapted sequence {Xn}mn=0 with E |Xn| < ∞ for all
0 ≤ n ≤ m is said to be a

(i) sub-martingale if E[Xn+1 | Fn] ≥ Xn for all 1 ≤ n ≤ m.

(ii) super-martingale if E[Xn+1 | Fn] ≤ Xn for all 1 ≤ n ≤ m.

(iii) martingale if E[Xn+1 | Fn] = Xn for all 1 ≤ n ≤ m.

{Xn,Fn} is a sub-martingale, if given the gambler’s information at time n, his fortune
is, on average, going to increase after the next round of play. This means that the gambler
is playing a favorable game. Similarly, a super-martingale represents an unfavorable game.

There is nothing super about the super-martingale. The name is related to superharmonic
functions. Think about random walks on Rd. Fix a radius r > 0 and let {Xn}n≥1 be a random
walk defined by

fXn+1(y | xn, xn−1, ..., x0) = fXn+1(y | xn) =

 1
rd−1ωd

if |x− xn| = r,

0 otherwise.

where ωd is the surface area of an Rd ball with radius 1. Let ϕ be a superharmonic function
defined on Rk. Then the sequence {ϕ(Xn),Fn} is a super-martingale.

Given a sequence of random variables {Xn}mn=1, there is a natural way of choosing the
filtration to which {Xn} is adapted: setting Fn = σ(X0, ..., Xn). Indeed, if {Xn} is a
martingale with respect to some filtration, then it must be a martingale with respect to the
natural filtration.

Example 2.1 (Branching Process): Let {ξnk : n ≥ 1, k ≥ 1} be a double array of i.i.d
random variables with E[ξnk] = µ and Zn be the size of the population of generation n.
Consider the evolution of a population starting from a single person.

Z0 = 1, Zn =

Zn−1∑
k=1

ξnk.

{Zn}n≥0 is called a branching process. Let Fn = σ(X1, ..., Xn).

E[Zn+1 | Fn] = µZn.

Therefore, {Zn,Fn}∞0=1 is a martingale, sub-martingale, super-martingale if and only if µ = 1,
≥ 1 or ≤ 1.
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Example 2.2 (Likelihood Ratio): Let Y1, Y2, ... be a sequence of random variables on a
probability space (Ω,F ,P). Let Q be another probability measure defined on F . Suppose
for any n, the joint distribution of (Y1, ..., Yn) under the two measures are both dominated
by the Lebesgue measure with derivatives pn and qn. Consider the sequence {Zn}n≥1

Zn =
qn(Y1, ..., Yn)

pn(Y1, ..., Yn)
.

and let Fn = σ(Y1, ..., Yn). Then {Zn,Fn}n≥1 is a martingale under P. First,

E |Zn| =
∫
Rn

qn(y1, ..., yn)

pn(y1, ..., yn)
pn(y1, ..., yn)d(y1, ..., yn) = 1 < ∞.

Now let A ∈ Fn. Then A = {ω : (Y1(ω), ..., Yn(ω)) ∈ B} for some Borel set B in Rn.

E[E[Zn+1 | Fn]1A] = E[Zn+11A]

=

∫
B×R

qn+1(y1, ..., yn+1)

pn+1(y1, ..., yn+1)
pn+1(y1, ..., yn+1) d(y1, ..., yn, yn+1)

=

∫
B

qn(y1, ..., yn) d(y1, ..., yn)

=

∫
B

qn(y1, ..., yn)

pn(y1, ..., yn)
pn(y1, ..., yn) d(y1, ..., yn)

= E[Zn1A].

Therefore, E[Zn+1 | Fn] = Zn.

3 Betting and Optional Stopping
Does there exist a betting strategy that allows one to “beat” a fair or unfavorable game?
Suppose an adapted sequence {Xn,Fn}mn=0 represents the fortune of a gambler playing the
original game. At each nth round of play, he gains Xn+1 −Xn. We now allow the gambler,
after nth round of play, to choose how much to bet at the next round. By choosing Hn+1 ≥ 0,
instead of gaining Xn+1 −Xn, he gains Hn+1(Xn+1 −Xn). His betting strategy can only be
based on his available information. Namely, for any two situations that the gambler cannot
tell apart, the bet should be the same. Therefore, Hn+1 should be measurable with respect
to Fn. This leads us to the notion of betting sequence.
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Definition 4 (Betting Sequence): A betting sequence with respect to a filtration
{Fn}mn=0 is a sequence of nonnegative random variables {Hn}mn=1 such that Hn is mea-
surable with respect to Fn−1.

Example 3.1 (Martingale Strategy): In 19th century, there is a popular betting strategy
named martingale. The betting strategy had a gambler double his bet whenever he loses a
round of game and stop when he first wins. This way, his first win will not only recover all
his previous losses, but also brings a profit of the original bet.

Consider the most simple form of game: the gambler wins 1 dollar if a fair coin comes
up head and loses 1 dollar otherwise. Let {Gn}n≥1 be the gambler’s gain at each round
of play. Then his fortune Xn after nth round forms a martingale (let X0 = 0), defined by
Xn = X0+

∑n
j=1 Gj with respect to the natural filtration Fn = σ(X0, ..., Xn) = σ(G1, ..., Gn).

The martingale strategy suggests a betting sequence {Hn}n≥1 and an induced sequence of
fortune {Yn}n≥0 defined as follows: H1 = 1, and for n ≥ 2,

Yn = Y0 +
n∑

j=1

HjGj

Hn =

2n−1 if Gj = −1 for all j ≤ n− 1

0 if Gj = 1 for some j ≤ n− 1.

Note that P(Gj = 1 for some j ∈ N) = 1. Hence, with probability 1, the gambler is walking
away with 2 dollars.

Theorem 1 (Betting Theorem): Let {Xn,Fn}mn=0 be an adapted sequence and
{Hn}mn=1 be a betting sequence. Define Y0 = X0 and Yn = X0+

∑n
j=1 Hj(Xj −Xj−1) =

Yn−1 +Hn(Xn −Xn−1). Then {Xn,Fn}mn=0 is a

(i) martingale, then {Yn,Fn}mn=0 is also a martingale.

(ii) sub-martingale, then {Yn,Fn}mn=0 is also a sub-martingale.

(iii) super-martingale, then {Yn,Fn}mn=0 is also a super-martingale.

Proof. It is easy to see that {Yn}mn=0 is adapted to {Fn}mn=0 and

E |Yn| ≤ E |X0|+
n∑

j=1

Hj(E |Xj|+ E |Xj−1|) < ∞.
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Now suppose {Xn,Fn}mn=1 be a sub-martingale.

E[Yn+1 | Fn] = E[Yn +Hn+1(Xn+1 −Xn) | Fn]

= Yn +Hn+1(E[Xn+1 | Fn]−Xn)

≥ Yn.

Is this theorem enough to claim that the gambler cannot beat a fair game? Certainly
not. Suppose there is a large number I of gamblers (indexed by i) who play independently
the coin flipping game and they all adopt the martingale strategy {Hn}n≥1 described in
Example 3.1. Let {Yin}n≥0 be gambler i’s fortune after each round n, and suppose Yi0 = 0

for all i. Then Theorem 1 suggests that (1/I)
∑I

i=1 Yin ≈ E[Y1n] = 0. But why should we
care about the average fortune of bidders at some particular time n instead of the average
of their final fortune when they stop playing?

As we mentioned in Example 3.1, the gambler is going to win 2 dollars with probability
1. It seems that the gambler could beat the fair game by adopting the martingale strategy.
However, there is a hidden assumption in that strategy: the gambler has unlimited fund.
We will show that if this is not the case, then on average, the gambler is going to walk away
with nothing when he stops playing.

The martingale strategy involves stopping at some particular point when some condition
is satisfied. This leads to the notion of stopping time.

Definition 5 (Stopping Time): Let T be a random variable taking values in N ∪
{0} ∪ {+∞}, defined on a probability space (Ω,F ,P) with a filtration {Fn}n≥0. We
say that T is a stopping time if {T = n} ∈ Fn for all n. T (ω) = +∞ if T (ω) /∈ N∪{0}.
Note that T is a stopping time if and only if {T ≤ n} ∈ Fn for all n if and only if
{T > n} ∈ Fn. We say that T is a proper stopping time if P(T ̸= ∞) = 1.

In Example 3.1, the martingale strategy involves a stopping time defined by T = inf{j >
0 : Gj = 0}. The gambler’s fortune when he stops playing is YT . As we mentioned, YT = 2

almost surely.

Theorem 2 (Doob’s Optional Stopping Theorem I): Let {Xn,Fn}n≥0 be a sub-
martingale and let T be a stopping time w.r.t {Fn}n≥0. Define X̃n = Xmin{T,n}. Then
{X̃n,Fn} is also a sub-martingale and hence E[X̃n] ≥ E[X0].
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Proof. Define for all n ≥ 1, Hn = 1 if T > n − 1 and Hn = 0 if T ≤ n − 1, Notice that
{Hn = 0} = {T ≤ n − 1} ∈ Fn−1. Therefore, {Hn}n≥1 is a betting sequence. Observe that
X̃n = X0 +

∑n
j=1 Hj(Xj −Xj−1). By Theorem 1, the result follows.

Notice that if T is a proper stopping time, then

X̃n
a.s.−−→ XT as n → ∞.

But it does not guarantee that
E[X̃n] −→ E[XT ].

In Example 3.1, stopping time T = inf{j ≥ 1 : Gj = 1} and Ỹn = Yn. We see that Yn
a.s.−−→ YT ,

but E[Yn] = 0 while E[YT ] = 2 > 0.

Theorem 3 (Doob’s Optional Stopping Theorem II): Let {Xn,Fn}n≥0 be an
adapted sequence and let T be a proper stopping time with respect to {Fn}n≥0. If for
all n, |Xmin{T,n}| < K for some K, then

(i) E[XT ] ≥ E[X0] if {Xn,Fn}n≥0 is a sub-martingale.

(ii) E[XT ] ≤ E[X0] if {Xn,Fn}n≥0 is a super-martingale.

(iii) E[XT ] = E[X0] if {Xn,Fn}n≥0 is a martingale.

Proof. Suppose {Xn,Fn}n≥0 is a sub-martingale. Since Xmin{T,n}
a.s.−−→ XT , by Dominated

Convergence Theorem, E[XT ] = limn→∞ E[Xmin{T,n}] ≥ E[X0].

Example 3.2 (Martingale Strategy continued): In real life, the martingale strategy is
not applicable because the gambler has limited fund. The betting sequence {Hn}n≥1 and
stopping time T should be revised. Suppose the gambler has a fund of A > 2. If his loses
over A dollars, he is broke, and is forced to leave.

Hn =

2n−1 if Gj = −1 for all j ≤ n− 1

0 if Gj = 1 or Yj < −A for some j ≤ n− 1.

T = inf{n ≥ 1 : Gn = 1 or Yn < −A}.

The induced sequence of fortune {Yn}n≥1 is still a martingale. Since it is uniformly bounded
by |Yn| ≤ A, by Theorem 3, E[YT ] = E[Y0] = 0.

Suppose we have two stopping times S and T with S ≤ T , how could we guess XT at time
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S (which is random)? We shall first know the information available at time S. Although at
any time n, you can always distinguish whether {S = n} has occurred (by the definition of
stopping time), knowing S = n still brings additional information!

Definition 6 (FT ): Let F∞ = σ(
⋃

n≥0) and T be a stopping time. Define the gambler’s
information when he stops playing as FT ,

FT = {A ∈ F∞ : A ∩ {T = n} ∈ Fn for all n}.

One can check that FT is indeed a σ-algebra. Also, XT is FT -measurable. And if
S ≤ T , then FS ⊂ FT .

Example 3.3 (Trivial Stopping Time): Let stopping time T be defined T ≡ m, namely,
always stop playing after the mth round of play. Notice that {T = n} = ∅ if n ̸= m and
{T = m} = Ω if n = m. Hence FT = Fm.

Theorem 4 (Doob’s Optional Stopping Theorem III): Let {Xn,Fn}n≥0 be a sub-
martingale (super-martingale), and S and T be two stopping times such that S ≤ T .
If XS and XT are integrable, and if

lim inf
n→∞

E[|Xn|1{T>n}] −→ 0, (1)

then
E[XT | FS] ≥ (≤)XS.

If, in addition, {Xn}n≥0 is a martingale, then the equality holds.

Proof. It suffices to prove that for any A ∈ FT ,∫
A

XT −XS dP ≥ 0.

Let {nk}k≥1 be a subsequence along which the limit in Equation 1 is reached and define
Tk = min{T, nk} and Sk = min{S, nk}. Note that for all k ≥ 1, Sk ≤ Tk ≤ nk. It suffices to
prove ∫

A

XTk
−XSk

dP ≥ 0 for all k ≥ 1,∫
A

|XTk
−XT | dP −→ 0,

∫
A

|XSk
−XS| dP −→ 0.
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We may write

XTk
−XSk

=

nk∑
n=1

(Xn −Xn−1)1{Sk + 1 ≤ n ≤ Tk}.

For any n ≤ nk, {Sk + 1 ≤ n} = {S ≤ n − 1}, while {n ≤ Tk} = {n ≤ T} = {T > n − 1}.
Since A ∈ FS, A ∩ {S ≤ n − 1} ∈ Fn−1. A ∩ {Sk + 1 ≤ n} ∩ {n ≤ Tk} ∈ Fn−1. Define
Bn = A ∩ {Sk + 1 ≤ n} ∩ {n ≤ Tk},

∫
A

XTk
−XSk

dP =

nk∑
n=1

∫
Bn

Xn −Xn−1 dP ≥ 0,

because
∫
Bn

Xn dP =
∫
Bn

E[Xn | Fn−1] dP.∫
A

|XTk
−XT | dP =

∫
A

|Xnk
−XT |1{T>nk} dP

≤
∫
A

|Xnk
|1{T>nk} dP+

∫
A

|XT |1{T>nk} dP

−→ 0.

Remark: If there exists n0 < ∞ such that P{T < t0} = 1, then Equation 1 holds.

Using Theorem 4, we can derive a Markov-type inequality for martingales.

Theorem 5 (Doob’s Maximal Inequality): Let {Xn,Fn}n≥0 be a sub-martingale
and for each 0 ≤ m, let Mm = max{X1, ..., Xm}. Then for any m ≥ 0 and x ∈ (0,∞),

P(Mm > x) ≤
E[Xm1{Mm>x}]

x
≤ E[X+

m]

x
.

Proof. Define the stopping time S by:

S =

inf{0 ≤ n ≤ m : Xn > x} on A = {Mm > x},

m on Ac,

and T by T ≡ m. Since S ≤ T and P{T ≤ m} = 1, by Theorem 4, E[Xm | FS] =

E[XT | FS] ≤ XS. Note that for any 0 ≤ n ≤ m − 1, A ∩ {S = n} = {S = n} ∈ Fn and
A ∩ {S = m} = {X0, ..., Xm−1 ≤ x,Xm > x} ∈ Fm. Therefore, A ∈ FS.

P(A) ≤
∫
A
XS dP
x

≤
∫
A
XT dP
x

=
E[Xm1A]

x
≤ E[X+

m]

x
.
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Theorem 6 (Doob’s Lp-Maximal Inequality for Sub-Martingales): Let
{Xn,Fn}n≥0 be a sub-martingale and let Mn = {Xj : 1 ≤ j ≤ n}, Then for any
p ∈ (1,∞),

E
[
(M+

n )
p
]
≤
(

p

p− 1

)p

E
[
(X+

n )
p
]
≤ ∞.

Proof. If E[(X+
n )

p] = ∞, then the inequality clearly holds. We therefore focus on the case
when E [(X+

n )
p] < ∞. Note that for any nonnegative random variable Y , x > 0 and p > 1,

E[Y p] = E
[∫ Y

0

pxp−1 dx

]
= E

[∫ ∞

0

pxp−11{Y >x} dx

]
=

∫ ∞

0

pxp−1 P{Y > x} dx. (by Tonelli’s Theorem)

Hence,

E[(M+
n )

p] =

∫ ∞

0

pxp−1 P(Mn > x) dx

≤
∫ ∞

0

pxp−2 E[X+
n 1{Mn>x}] dx (by Theorem 5)

=
p

p− 1
E
[
X+

n (M
+
n )

p−1
]

(by Tonelli’s Theorem)

≤ p

p− 1
E
[
(X+

n )
p
] 1

p E
[
(M+

n )
p
] p−1

p . (by Hölder’s Inequality)

This implies

E
[
(M+

n )
p
] 1

p ≤ p

p− 1
E
[
(X+

n )
p
] 1

p .

Corollary 1: Let {Xn,Fn}n≥0 be a martingale and let M̃n = sup{|Xj| : 1 ≤ j ≤ n}.
Then for p > 1,

E
∣∣∣M̃n

∣∣∣p ≤ ( p

1− p

)p

E |Xn|p.
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4 Martingale Convergence Theorem
Martingales converge under very mild conditions, making them highly tractable. The fol-
lowing are some results which will be proved in this section:

(i) Any nonnegative super-martingale converges almost surely.

(ii) Any sub-martingale {Xn}n≥0 for which {E |Xn|}n≥0 is bounded converges almost surely.

(iii) Further, if the sub-martingale is nonnegative and {E |Xn|p}n≥0 is bounded for some
p ∈ (1,∞), then Xn converges almost surely as well as in Lp.

These results depend crucially on Doob’s Upcrossing Lemma. Recall that a sequence
of real numbers {xj}j≥1 converges (may converge to +∞ or −∞), if and only if, for any
a, b ∈ R and a < b, the sequence crosses from a to b only finitely many times.

Definition 7 (Upcrossings): Define, for a sequence of real numbers {xj}nj=1 and
a < b,

N1({xj}nj=1; a, b) := min{j : 1 ≤ j ≤ n, xj ≤ a},

N2 := min{j : N1 < j ≤ n, xj ≥ b},
...

N2k−1 := min{j : N2k−2 < j ≤ n, xj ≤ a},

N2k := min{j : N2k−1 < j ≤ n, xj ≥ b}.

Let K be the last k such that N2k is well-defined. If N1 and N2 are not well-defined,
then K = 0. The number of upcrossings of {xj}nj=1is defined as

U({xj}nj=1; a, b) := K.

Figure 1 shows a sequence with a total of two upcrossings, U({xj}9j=1; a, b) = 2.

Proposition 1: Let {xj}j≥1 be a sequence of real numbers and let Un(a, b) :=

Un

(
{xj}nj=1; a, b

)
for all a < b. Then {xj}j≥1 converges (may converge to +∞ or

−∞) if and only if supn≥1 Un(a, b) < ∞ for any a < b.

Doob’s Upcrossing Lemma asserts that for a sub-martingale {Xj,Fj}nj=1, the expected
number of upcrossings from a to b can be bounded by above by some function of E[X+

n ] and
a, b!
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a

b

x1

x2

x3

x4

x5

x6

x7 x8

x9

N1 = 3

N2 = 5

N3 = 7

N4 = 9

Figure 1: A sequence {xi}9i=1 with two upcrossings.

Theorem 7 (Doob’s Upcrossing Lemma): Let {Xj,Fj}nj=1 be a sub-martingale
and let a < b be real numbers. Let Un := U({Xj}nj=1; a, b). Then

E[Un] ≤
E(Xn − a)+ − E(X1 − a)+

b− a
≤ EX+

n + |a|
(b− a)

.

Proof. First prove the case when Xj ≥ 0 for all j ≥ 1 and a = 0. Let Un := U
(
{Xj}nj=1; 0, b

)
.

This means that N1

(
{Xj}nj=1; 0, b

)
, ..., N2Un

(
{Xj}nj=1; 0, b

)
are well-defined. Define Ñ0 ≡ 1

and for 1 ≤ j ≤ n,

Ñj =

Nj if j ∈ {1, 2, ..., 2Un},

n otherwise.

One can check that Ñj’s are proper stopping times with Ñj ≤ Ñj+1 inductively. By Theo-
rem 4,

E
[
XÑj+1

−XÑj

]
≥ 0

for 1 ≤ j ≤ n. Therefore,

E[Xn −X1] =
n∑

j=1

E
[
XÑj+1

−XÑj

]
=
∑

j is odd
E
[
XÑj+1

−XÑj

]
+

∑
j is even

E
[
XÑj+1

−XÑj

]
≥ E[bUn] +

∑
j is even

E
[
XÑj+1

−XÑj

]
≥ bE[Un],

which proves both inequalities under the special case. Now let {Xj,Fj}j≥n be an arbitrary
sub-martingale and a < b be arbitrary. Define Yj := (Xj − a)+. Then {Yj,Fj}nj=1 is a
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sub-martingale. Note that Un = U
(
{Xj}nj=1; a, b

)
= U

(
{Yj}nj=1; 0, b− a

)
. By the above

conclusion,
E[(Xn − a)+]− E[(X1 − a)+] ≥ (b− a)E[Un].

The last inequality follows from the fact that (X − a)+ ≤ X+ + |a| for any random variable
X.

Lemma 1: Let {Xn,Fn}n≥1 be a sub(super)-martingale. Then

sup
n≥1

E |Xn| < ∞ ⇐⇒ sup
n≥1

E[X+
n ] < ∞

(
sup
n≥1

E |Xn| < ∞ ⇐⇒ sup
n≥1

E[X−
n ] < ∞

)
.

Proof. The direction ( =⇒ ) is obvious because |Xn| ≥ X+
n . We prove the opposite direction.

Note that X−
n = X+

n −Xn. Hence,

sup
n≥1

E[X−
n ] ≤ sup

n≥1
E[X+

n ]− inf
n≥1

E[Xn]

= sup
n≥1

E[X+
n ]− E[X1] < ∞.

Theorem 8 (Almost Sure Convergence of Sub-martingales): Let {Xn,Fn}n≥1

be a sub-martingale (super-martingale) such that

sup
n≥1

E[X+
n ] < ∞

(
sup
n≥1

E[X−
n ] < ∞

)
.

Then Xn converges almost surely to a finite limit X∞ and E |X∞| < ∞.

Proof. We first prove that
lim sup
n→∞

Xn = lim inf
n→∞

Xn

almost surely. Let Un(a, b) denote U
(
{Xj}nj=1; a, b

)
and U∞(a, b) = U ({Xj}j≥1; a, b) for any

a, b ∈ R. It is clear that

Un(a, b) ≤ Un+1(a, b), Un(a, b) −→ U∞(a, b) as n → ∞.
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Note that

{ω : U∞(a, b) < ∞ for all a, b ∈ Q} =

{
ω : lim sup

n→∞
Xn = lim inf

n→∞
Xn

}
.

Fix any a < b ∈ Q,

E[U∞(a, b)] = lim
n→∞

E[Un(a, b)] (by Monotone Convergence Theorem)

≤
supn≥1 E[X+

n ] + |a|
b− a

(by Theorem 7)

< ∞.

Therefore, for any a, b ∈ Q, P(U∞(a, b) = ∞) = 0. And we thus have

P (U∞(a, b) = ∞ for some a, b ∈ Q) = P
( ⋃

a<b∈Q

{U∞(a, b) < ∞}

)
≤
∑

a<b∈Q

P(U∞(a, b) < ∞) = 0,

which proves the assertion. We now know that limn→∞ Xn = X∞ exists. By Lemma 1 and
Fatou’s Lemma,

E |X∞| = E
(
lim
n→∞

|Xn|
)
≤ lim

n→∞
E |Xn| ≤ sup

n≥1
E |Xn| < ∞.

Corollary 2: Let {Xn,Fn}n≥1 be a sub-martingale (super-martingale) that is bounded
above (below), then Xn converges almost surely to a finite limit.

If we want convergence in L1, more conditions are required. Recall that a collection of
L1 functions {fλ}λ∈I defined on a measured space (X ,Σ, µ) is said to be uniformly integrable
if the following two conditions hold:

• supλ∈I
∫
χ
|fλ| dµ < ∞.

• For any ϵ > 0, there exists δ > 0 such that for any set A with µ(A) < δ,

sup
n≥1

∫
X
|Xn|1A dµ < ϵ.

Page 13 of 20



Lemma 2: Let {Xn}n≥1 be a sequence of random variables defined on a probability
space (Ω,F ,P) and that {|Xn|p}n≥1 is uniformly integrable. Suppose Xn converges in
probability to a random variable X∞. Then X∞ ∈ Lp(P) and {Xn}n≥1 converges to
X∞ in Lp.

Proof. It suffices to prove that {|Xn|p}n≥1 is a Cauchy sequence since Lp(P) is complete. Fix
ϵ > 0. For any 0 < n < m, let A(n,m) := {|Xn −X∞| > ϵ or |Xm −X∞| > ϵ}.

E [|Xn −Xm|p] = E [|Xn −Xm|p1A] + E [|Xn −Xm|1Ac ]

≤ E [|Xn|p1A] + E[|Xm|p1A] + (2ϵ)p.

By uniformly integrability, there exists δ > 0 such that for any set E with P(E) < δ,
E [|Xk|p1A] < ϵ for all k. There exists N ∈ N such that for all n,m > N , P(A(n,m)) < δ

and thus both E [|Xn|p1A] and E[|Xm|p1A] are smaller than ϵ.

Theorem 9 (L1 Convergence of Sub-martingales): Let {Xn,Fn}n≥1 be a sub-
martingale (super-martingale), then the two statements are equivalent:

(i) {Xn}n≥1 converges almost surely and in L1 to a finite limit.

(ii) {Xn}n≥1 is uniformly integrable.

Proof.

• (i =⇒ ii): Indeed, for any sequence of random variables {Xn}n≥1, convergence in L1

implies that the sequence is uniformly integrable.

• (ii =⇒ i): Since {Xn}n≥1 is uniformly integrable, by Theorem 8, {Xn}n≥1 converges
almost surely to an L1 limit X∞. By Lemma 2, the conclusion follows.

Theorem 10 (Lp Convergence of Nonnegative Sub-martingales): Let
{Xn,Fn}n≥1 be a nonnegative sub-martingale such that supn≥1 E[Xp

n] < ∞. Then
{Xn}n≥1 converges to an Lp limit X∞ almost surely and in Lp.

Proof. Let Mn := max{X1, ..., Xn}. {Xp
n,Fn}n≥1 is a nonnegative sub-martingale. By The-

orem 6,
E[Mp

n] ≤
(

p

p− 1

)p

E[Xp
n] ≤

(
p

p− 1

)p

sup
n≥1

E[Xp
n] < ∞.
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Let M denote supn≥1 Xn and E[Mp] < ∞. Hence, for any subset A ∈ F ,

sup
n≥1

E (Xp
n1A) ≤ E (Mp1A) −→ 0 as P(A) → 0,

which means that {Xp
n}n≥1 is uniformly integrable. By Theorem 8 and Lemma 2, {Xn}n≥1

converges to an Lp limit X∞ almost surely and in Lp.

Corollary 3: Let {Xn,Fn}n≥1 be a martingale such that supn≥1 E[|Xn|p] < ∞. Then
{Xn}n≥1 converges to an Lp limit X∞ almost surely and in Lp.

5 Applications

5.1 Doob Martingale and Kolmogorov’s Zero-One Law

Definition 8 (Doob Martingale): Let X be an integrable random variable defined
on a probability space (Ω,F ,P) and let {Fk}k≥1 be a filtration. Define for all k ≥ 1,

Xk := E[X | Fk].

One can easily see that {Xk,Fk}k≥1 is a martingale and can further check that {Xk}k≥1

is uniformly integrable. {Xk,Fk}k≥1 is called a Doob Margingale.

Theorem 11 (Convergence of Doob Martingale): Let X be an integrable random
variable defined on a probability space (Ω,F ,P). Let {Fn}n≥1 be a filtration and write
F∞ = σ(

⋃
n≥1 Fn). Then we have

E[X | Fn] −→ E[X | F∞] as n → ∞

almost surely and in L1.

Proof. Let Xk := E[X | Fn]. As mentioned in Definition 8, {Xk,Fk}k≥1 forms a martingale
and the sequence {Xk}k≥1 is uniformly integrable. By Theorem 9, Xk converges to some
finite limit X∞ almost surely and in L1. We shall prove that X∞ = E[X | F∞]. X∞ and
E[X | F∞] are F∞-measurable. Therefore, it suffices to prove that for any A ∈ F∞,∫

A

X∞ dP =

∫
A

E[X | F∞] dP .
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Define the collection of sets

L =

{
A ∈ F∞ :

∫
A

X∞ dP =

∫
A

E[X | F∞] dP
}
.

One can check that L is a lambda system. On the other hand, it is easy to see that P =⋃
k≥1 Fk is a π system. For any A0 ∈ P , say A0 ∈ Fn for some n,∫

A0

Xk dP →
∫
A0

X∞ dP as k → ∞,

because Xk converges to X∞ in L1. But
∫
A0

Xk dP = E[X1A0 ] for all k ≥ n, implying that∫
A0

X∞ dP = E[X1A0 ]. Also,
∫
A0

E[X | F∞] dP = E[X1A0 ]. This proves that A0 ∈ L. We
thus conclude P ⊂ L, any by Dynkin’s π-λ Lemma, F∞ ⊂ L.

Theorem 12 (Kolmogorov’s Zero-One Law): Let (Ω,F ,P) and {Fk}k≥1 be a se-
quence of mutually independent σ-algebras, Fk ⊂ F for all k. Define Gn = σ

(⋃
k≥n Fk

)
and T =

⋂
n≥1 Gn. T is called the σ−algebra of tail events. Any event in T has either

probability 1 or 0.

Proof. We first prove that any integrable random variable Y that is T -measurable is almost
surely constant. By Theorem 11,

E[Y | Fk] −→ E[Y | G1] = Y

almost surely and in L1. On the other hand, Y ⊥⊥ Fk for all k ∈ N and therefore

E[Y | Fk] = E[Y ].

Hence, Y = E[Y ] almost surely. Now for any set A ∈ T , 1A is almost surely a constant. And
since 1A can only take value of either 1 or 0, we conclude that P(A) = E[1A] equals either 1
or 0.
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5.2 Reversed Martingale and Strong Law of Large Numbers

Definition 9 (Reversed Martingale): Let (Ω,F ,P) be a probability space. Let
{Xn,Fn}n≤−1 be an adapted family, i.e., Fn ⊂ Fm ⊂ F−1 ⊂ F for all −∞ < n < −1

and Xn is Fn-measurable. {Xn,Fn}n≤−1 is called a reversed martingale if

(i) E |Xn| < ∞ for all n ≤ −1

(ii) E[Xn+1 | Fn] = Xn for all n ≤ −1.

The definitions for reversed sub-martingale and reversed super-martingale are similar.

Theorem 13 (Convergence of Reversed Martingales): Let {Xn,Fn}n≤−1 be a
reversed martingale. Then

Xn −→ E[X−1 | F−∞] as n → ∞

almost surely and in L1 where F−∞ =
⋂

n≤−1 Fn.

Proof. Fix a < b. Let Un denote the number of upcrossings from a to b by {Xk}−1
k=n. By

Theorem 7,
E[Un] ≤

E(X−1 − a)+

(b− a)+
.

Let U denote the number of upcrossings from a to b by the whole sequence {Xk}k≤−1. Then
U = limn→∞ Un, and by MCT,

E[U ] = lim
n→∞

E[Un] ≤
E(X−1 − a)+

(b− a)+
< ∞.

This proves that P(U < ∞) = 1. Since this holds for all a < b, using the same argument in
the proof of Theorem 8, we conclude that

P
(
lim sup
n→−∞

Xn = lim inf
n→−∞

Xn

)
= 1.

Therefore, {Xn}n≤−1 converges to some limit X−∞ almost surely. Observe that for all n < −1
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and x > 0,

E
[
|Xn|1{|Xn|>x}

]
= E

[
|E[Xn+1 | Fn]|1{|Xn|>x}

]
≤ E

[
E[|Xn+1|1{|Xn+1|>x} | Fn]

]
(by Jensen’s Inequality)

= E[|Xn+1|1{|Xn+1|>x}]

...
≤ E[|X−1|1{|X−1|>x}].

This proves that {Xk}k≤−1 is uniformly integrable. By Lemma 2, Xk converges to X−∞ in
L1(F−1) and X−∞ ∈ L1(F−∞). We now prove that indeed, X−∞ = E[X−1 | F−∞] almost
surely. Let A ∈ F−∞. On one hand,∫

A

Xk dP −→
∫
A

X∞ dP as k → −∞.

On the other, ∫
A

Xk dP =

∫
A

E[Xk | F−∞] dP =

∫
A

E[X−1 | F−∞] dP .

This proves that ∫
A

X∞ dP =

∫
A

E[X−1 | F−∞] dP .

Theorem 14 (Strong Law of Large Numbers for i.i.d. rv’s): Let {Xi}i≥1 be a
sequence of i.i.d. random variables with E |X1| < ∞. Then

Xn =
1

n

n∑
k=1

Xk −→ E[X1]

almost surely and in L1.

Proof. Let Sn denote
∑n

k=1 Xk. Consider the sequence of σ-algebras {F−k}k≥1 and random
variables {Y−k}k≥1 defined by, for each k ≥ 1,

F−k := σ(Sk, Xk+1, Xk+2, ...), Y−k := Xk.

We show that {Y−k,F−k}k≥1 is a reversed martingale. It is easy to see that {Y−k,F−k}k≥1
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is an adapted sequence. By independence,

E[Y−k+1 | F−k] = E[Xk−1 |Sk] =
1

k − 1

k−1∑
i=1

E[Xi |Sk].

By symmetry, for all 1 ≤ i ≤ k, E[Xi |Sk] are the same. Since
∑k

i=1 E[Xi |Sk] = Sk,
E[Xi |Sk] =

1
k
Sk = Xk. This shows that

1

k − 1

k−1∑
i=1

E[Xi |Sk] = Xk = Y−k.

By Theorem 13, Xk = Y−k converges almost surely and in L1. This means that limk→∞ Xk

exists almost surely. Write limk→∞ Xk = X∞. Since X∞ is a tail random variable, it is
constant almost surely. By the L1 convergence, E[X∞] = E[X1], and thus X∞ = E[X1]

almost surely.

5.3 Likelihood Ratio Test
Let {Xk}k≥1 be a sequence of i.i.d. random variables defined on a measurable space (Ω,F).
Suppose there are two possible underlying probability measures, P and Q, each induces a
p.d.f. of X1, X2, ..., Xn on Rn,

p(x1, ..., xn) =
n∏

i=1

p(xi), q(x1, ..., xn) =
n∏

i=1

q(xi).

A statistician is testing a statistical hypothesis with the following null and alternative hy-
potheses:

H0 : P is the underlying probability measure.
H1 : Q is the underlying probability measure.

He tests the hypothesis using the likelihood ratio test. Write Zn = q(X1, ..., Xn)/p(X1, ..., Xn) =∏n
i=1(q(Xi)/p(Xi)). Upon observing X1, ..., Xn, herejects H0 if Zn ≥ s

accepts H0 if Zn < s.
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for some predetermined s > 0. Let αn denote the probability of type 1 error (rejecting H0

when H0 is true), αn := P(Zn ≥ s) and βn denote the probability of type 2 error (accepting
H0 when H0 is false), βn := Q(Zn < s).

Theorem 15: The probability of type 1 error and type 2 error both converge to 0 as
the sample size goes to infinity. Namely,

αn −→ 0, βn −→ 0 as n → ∞.

Proof. We first prove that the probability of type 1 error goes to 0. On the probability
space (Ω,F ,P), as mentioned in Example 2.2, {Zn,Fn}n≥1 is a martingale where Fn =

σ(X1, ..., Xn). Note that Zn is bounded below by 0, and by Corollary 2, Zn converges to a
finite limit Z∞ almost surely. Indeed, Z∞ = 0 almost surely. Observe that

EP[q(X1)/p(X1)] =

∫
R
(q(x)/p(x))p(x) dx = 1.

Since the two densities p and q are assumed to be different, q(X1)/p(X1) is non-constant,
and by Jensen’s Inequality,

η := E
[(

q(X1)

p(X1)

) 1
2

]
< 1.

By Fatuo’s Lemma,

E
[
Z

1
2∞

]
≤ lim sup

n→∞
E
[
Z

1
2
n

]
= lim sup

n→∞

n∏
i=1

E
[(

q(Xi)

p(Xi)

) 1
2

]
= lim sup

n→∞
ηn = 0.

This proves that Z∞ = 0 P-almost surely. Therefore, αn = P(Zn ≥ s) −→ 0 as n → ∞. Now
write the event {Zn < s} as {1/Zn > 1

s
} and Z ′

n := 1/Zn = p(X1, ..., Xn)/q(X1, ..., Xn). Ob-
serve that {Z ′

n,Fn}n≥1 forms a martingale on (Ω,F ,Q). Following the exact same reasoning,
we obtain βn −→ 0 as n → ∞.
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