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1 Introduction

Let {P,}5°, be a sequence of probability measures on a probability space. What do
we mean by P, converges to P? In this note, we introduce basic concepts of weak
convergence which are used throughout the literature of empirical processes.

2 Measures on a Metric Space

We start from introducing some properties of a probability measure defined on a
metric space. Let S denote a metric space and S denote the Borel o-algebra.

We say that a probability measure P defined on a topological space equipped
with the Borel o-algebra (T, B(T)) is regular if for any € > 0 and A € B(T), there

exists a closed set F' and an open set G such that
FCACG, P(G-F)<e
On the other hand, we say that P is tight if there exists a compact set K such that

P(K)>1—e.

Theorem 1: Any probability measure defined on a metric space (S,S) is

regular.
Proof. For any closed set F', consider the sequence of open set

Ge={zeS:d=zF) < e}



Since F'is closed, G, | F' as € — 0. Therefore, P(G. — F') — 0 by the continuity of
probability measures. Since S is generated by closed sets in S, by checking all sets
A C S that satisfy the asserted property is a sigma-field, the proof is done. ]

There is an important implication of Theorem 1: to check that two probability
measures on a metric space coincide, it suffices to check whether they coincide on

open sets (closed sets).

Theorem 2: Probability measures P and Q coincide if and only if for any

bounded and continuous function f: (S,S) — R

/SfdP:/SfdQ.

Proof. Let us apply the conclusion we just obtained. Let F' be a closed set, and

1z its indicator function. We can approximate 1z with a continuous and bounded

functions defined by
fe(x) = (1 —d(z,F)/e)"

fe converges pointwise to 1 since F' is closed. By Bounded Convergence Theorem,

/fg(x) (dx) —>/1FP (dz) /f6 Q(dx) — Q(F).

But [ fe(z)P = [ fe(= ) for all €, and thus we must have P(F) = Q(F).
O

Now we introduce another important concept: tightness. We say that a proba-
bility measure P define on a topological space is tight if for any € > 0, there exists

a compact set K such that
P(K)>1—-e

Before we dive into a result regarding the tightness of a probability measure on
a metric space, let us review some concepts in topology.

We say that a topological space is second countable if there exists a countable
basis for the topology; Lindeldff if any open cover of a subset A C S admits a count-
able subcover; separable if there exists a countable and dense subset D. (“Dense”

means that any open subset of S includes an element of D.)
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Proposition 1: A metric space S is second countable if and only if it is

Lindel6ff if and only if it is separable.

We say that a metric space (5, d) is totally bounded if for any € > 0, there exists

a finite number of open balls whose center lies in S and their union contains S.

Theorem 3: If a metric space (S,S) is complete and separable, then any

probability measure on (5,S) is tight.

Proof. Since S is separable, there exists a countable and dense subset {z;}7°,. Note
that for any k, the collection of 1/k open balls {B(z;,1/k)}°, covers S. Let € > 0.
For each, choose n; € N such that

P( |J B(zi,1/k) | >1—¢/2"

1<ng

Now the set

M U B 1/k)

E>1i<ng

is totally bounded. Write Ay = B(x;,1/k). Observe that

i<ng

c

P4 ] =P( U4 >1-) P4 >1—«

E>1 E>1 E>1

Since S is complete, the closure K of (V51 U;<,, B(@i, 1/k) is compact. And clearly
P(K)>1—e. 0

Definition 1 (Separating Class): Let (S,S) be a measured space. A sub-
class A of S is called a separating class if any two probability measures coincide

on S if and only if they coincide on A.

As we mentioned, the class of closed sets is a separating class for the Borel o-
algebra. Indeed, by Dynkin’s m-A Lemma, any m-system that generates the Borel

o-algebra is a separating class.

Example 2.1: Let R* be the space of sequences of real numbers. Recall that the
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product topology of R is the one generated by the basis:
B = {01 x 05...0,, x R x R... : Oisare open,n < co}.

Hence, R*° is indeed a metric space. The product topology is separable. The

countable collection of points

Q={(¢1,-,Gn,0,..,0,....) : ¢ € Q,n < 00}

is dense in R*°. Define a metric on R by b(x;,y;) = d(x,v;) A 1. We can define a

metric on R

p(z,y) = Z 27"b(i, i)
=1

Then indeed this metric induces the product topology. Therefore, R* is a metric

space. Also, with this metric,
x—y < x; — y; for all .

Hence, R* is complete. We conclude that R* is a separable and complete metric
space. By Theorem 3, any probability measure on R* is tight.

Since R* is separable, it is also Lindel6ff. This means that the o-algebra gener-
ated by B is indeed the Borel o-algebra. It is also clear that B is a m-system. Hence,

the basis B is a separating class.

Example 2.2: Let C' = (0, 1] be the set of continuous functions f on [0, 1]. Define

the norm of f as | f|| = sup,cp 7 [f(#)], and give it the uniform metric,

p(f,9)=If—gl-

We show that C is separable. Let Dy be the set of polygonal functions that are linear
over each subinterval [(i—1)/k,i/k]| and have rational values at the endpoints. Since
each Dy, is countable, the set D = (J,~, Dy, is also countable. To show that D is
dense, for given f and €, choose k so l;rge so that the partition of [0, 1] is so fine,
that within each subinterval, |f(x) — f(y)| < € for any two points = and y in that
subinterval. By choosing the values of the endpoints to be rational numbers very
close to the original value of f on the endpoints, we can construct a g € D such that

p(f,g9) < e. Recall that C is also complete. Therefore, any probability on the Borel
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o-algebra of C is tight.
Write C as the Borel o-algebra of C'. Define the projection of functions on
t1,...,tx €[0,1] as
Tt () = (F(82), s f (k)

7 : C — RF is a continuous function, and thus also measurable. In C, we say
that a set A is finite-dimensional if there exists t1,...,t; and H C R* such that
A= ﬂ;}tk(H) Namely,

A={f €C: (f(tr), Ft2)s s f(t)) € HY.

Now for any set ﬂ-altk(H) and sq,...,5; € [0,1], the set can be written as

Tt e (H') for some H' C RFF!. Hence, for any

-1 - -1 -1
7Tt1,...7tk (Hl) N 7T81],-...,SL(H2) = ﬂ-tl,...,tk,sl,...,sl<Hi) n ﬂ-tl,...,

=" J(H{ N HY).

stk,S1,5...8

Hy)

tk,81,---751<

This proves that the collection of finite-dimensional sets is a w-system. Call such
collection C'r. Now each closed ball in C' can be written as a countable intersection
of sets in Cg
B(f.e) = ({g:lg(r) = f(r)| < €}
reQ
Hence, o(CF) contains all closed balls, and thus all open balls. Since C' is separa-
ble and thus Lindeloff, o(CF) contains all open sets. Since Cp is a m-system and

o(Cr) =C, CF is a separating class.
3 Weak Convergence of Probability Measures

Definition 2 (Weak Convergence): We say that a sequence of probability
measure {P,} defined on (S,S) converges weakly to a probability measure P,

denoted as P, = P, if for any bounded and continuous real function f we

/SfdPn—>/SfdP.

have
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Definition 3: Let X,,’s and X be random variables with realized values on
(S,8"). Let pn(p) be the measure on 8" induced by X,,(X). We say that X,

converge to X weakly if p,, converge to p weakly.

We start from some simple examples to illustrate the ideas behind the definition.

Example 3.1: On an arbitrary metric space S, let ;(A) = 14(z) be the probability
measure that assigns unit mass on the point x. If z,, — = and f is continuous, then
f(zn) — f(x), and thus 0,, = d,. On the other hand if x, /4 =z, there exists
e > 0 such that d(z,,z) > € for infinitely many n’s. Simply choose the bounded
and continuous function f(y) = (1 —d(y,x)/e)". Then f(x) =1 but f(x,) =0 for
infinitely many n’s. This shows that §,, # J,. Therefore, 6, = 0, if and only if

T, — T.

Example 3.2: Let S = [0, 1] with the usual metric. Consider a sequence {4,} of
sets Ay, = {xpy },~, for each n. Suppose {A,} is asymptotically uniform in the sense
that for any subinterval J C [0, 1],

1

—#{k:xp € T} — |J].

Tn
Define P,, to be uniform on A,, and P be the Lebesgue measure on [0,1]. Then
P,, = P. Let f be continuous and bounded defined on [0, 1]. f is Lebesgue integrable
and also Reimann integrable. For any € > 0, there exists fine enough partition

{J1, ..., Jm} such that the upper Riemann sum and the lower Riemann sum are

within € of the integral.

m 1 m 1
Sulkl+ez [ fap. Suln-e< [ ap.
i=1 0 i—1 0

Asymptotic on n,
1 Tn 1
dP, = —_ n
| rapa =3 s
k=1
1
< ) —#H Kk xpk € i}
< ; T‘n#{ Tk € J, }’U

m 1
i=1
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Similarly, one can prove fol f d P, is asymptotically larger or equal to fol fdP. This
proves that fol fdP, — fol fdP. Hence, P, = P.

Definition 4 (P-continuity Set): We call a set A C S a P-continiuty set,
if P(9A) = 0, where A denotes the boundary of A. (9A = A — int(A)).

The following theorem provides useful conditions equivalent to weak convergence.

Theorem 4 (Portmanteau Theorem): Suppose {P,} and P are probabil-
ity measures defined on (.5, S). These conditions are all equivalent to P,, = P:

(i) For any continuous and bounded real f, [¢ fdP, — [¢ fdP.

(ii) For any uniformly continuous and bounded real f, [¢ fdP,, — [¢ fdP.
(iii) limsup,,_ ., Prn(F) < P(F) for all closed F.
(iv) liminf, o P, (G) > P(G) for all open G.

(v) Pn(A) — P(A) for all P-continiuty sets A.

Recall that in Example 3.1, we see that 6,, = 6, <= =z, — x. If we choose
A = {z}, then apparently d,,(A) =0 4 1 = §,(A). This does not contradict with

Theorem 4 because {z} is not a P-continuity set.
Proof.
e (i) = (ii): Trivial
o (ii) == (iii): Let F be a closed set in S. Set for all € > 0, fe(x) =
(1 —d(z,F)/e)t and F. = {x : d(z,F) < €}. Since F is closed, F, | F as
e = 0. Also, [ fedP, > P,(F) for all n. Fix 6 > 0. There exists a small
enough € such that P(F,) < P(F) + ¢. Note that
P, (F) < /fEdPn ~ /fedP <P(F.)<P(F)+6

= limsup P, (F) < P(F) + 4.

n—o0

o (ili) = (iv): It follows easily from complement arguments.
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o (iii), (iv) == (v): Since A is a P-continuity set, P(A) = P(A) = P(intA).
We then have

limsup P,,(A) < P(A) = P(4)

n—oo
lin_l)inf P,(intA) > P(intA) = P(A).

This then implies

limsup P,,(A) = liminf P,,(A) = P(A).

n—00 n—oo

e (v) = (i): By linearity of integrals, we can assume f is bounded between 0
and 1. Observe that

/SfdPZ/OlP(f>t)dt, /SfdPn:/Oan(f>t)dt.

Since f is continuous, O{s : f(s) >t} C{s: f(s) =t}. But P(s: f(s) =t) can
be strictly positive only for countably many ¢’s. By (v), P,(f >t) — P(f > ¢)
for almost every t. Hence, by BCT,

1 1
/ Pn(f>t)dta/ P(f > t)dt.
0 0

O

It will be nice if we only need to check whether P,, converges to P on a certain

class of sets in S to unsure that P,, = P.

Theorem 5: Suppose (i) that Ap is a m-system and (ii) that each open set
is a countable union of Ap sets. If P, (A) — P(A) for every A in Ap, then
P, = P.

Theorem 6: Suppose (i) that Ap is a m-system and (ii) that S is separable,
and for every z € S and € > 0, there exists A € Ap such that

x € int(A) C A C B(x,e).
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If P,(A) — P(A) for all A € Ap, then P,, = P.

Definition 5 (Convergence-Determining Class): We call a subclass A of
S a convergence-determining class if, for any {P,} and P, P,,(4) — P(A) for
all P-continuity A in A implies P,, = P.

To ensure that a collection of A is convergence-determining, we must make sure
that the class of P-continiuty sets Ap in A satisfies the conditions of Theorem 6 for
any P. Fix any x € S and € > 0. Let A, denote the collection of sets in A such
that

x € int(A) C A C B(z,¢),

and let 0A; . denote the collection of their boundaries.
Theorem 7: Suppose that (i) that A is a m-system and (ii) that S is separable

and for each x € S and €, 0A; ( either contains @ or contains uncountably

many disjoint sets. Then A is a convergence-determining class.

Proof. Let {P,} and P be given arbitrary. Let Ap denote the collection of P-
continuity sets in A. Apparently, Ap is a m-system. Now fix z € S and € > 0. Since
0Az . must contain a set £ with P(E) = 0, this means that there is a P-continiuty
set in A, .. Hence, Ap satisfies the conditions in Theorem 6. This shows that A is

a convergence-determining class. O

Example 3.3: The collection of A finite intersections of open balls form a convergence-

determining class. Because
0B(z,r) C{y :d(z,y) =1},

and thus either @ is in A, ¢ or there are uncountably many disjoint sets in 0.4, .

Example 3.4: Consider the collection of rectangles in R”, sets of the form {z : b <
x < a}. The collection satisfies Theorem 7, and hence is a convergence-determining

class.

Example 3.5: In R", the class A of sets

Qx:{y:ygl‘}

Page 9 of 18



is also a convergence-determining class. Suppose P,,(Q,) — P(Q) for each @, with
P(0Qz) = 0. For each 1 < i < k, define F; = {t : P{x : z; =t} > 0}. E; is at most
countable. Hence, there are uncountably many rectangles (in the form (a,b]) such
that each vertex x = (x1,...,xx) satisfy z; ¢ F;. Let Ap be the collection of such
rectangles. Such collection satisfies the condition in Theorem 6. For any A € Ap,
for each vertex x of A, P(0Q;) = 0. A can be written as inclusion and exclusions
of the @;’s. It then follows that P,,(A) — P(A) by the inclusion-exclusion formula.
And thus P,, = P.

There is another way to state that A is a convergence-determining class. For
any probability measure P, define F(z) = P{y : y < 2}. Then P,, = P if and only
if F},(x) — F(x) for all z at which F is continuous.

Hence, for R™-valued random variables X,,, saying that X,, converges weakly to

X is equivalent to saying that X,, converges to X in distribution.

Suppose that h: (S,8) — (S5, 8’) is a measurable function that maps S into S’.
For any probability measure P on (S,S), h then induces a measure on S’, Ph~1
defined by

Theorem 8 (Continuous Mapping Theorem): Let h : (S,S) — (5, 8)
be a continuous function, and suppose P,, = P on (S,S). Then P, h~t = h~!
on (S,S).

Proof. Let f be a continuous function from (S’,8’) into (R, R). Since f and h are

continuous, foh: (S,8) — (R, R) is also continuous. Hence, by change of variable,

fdPnhlz/fothn—>/foth: fdPht
S’ S S S’

O]

Corollary: Let X,,’s and X be R"-valued, and suppose X,, converges to X in dis-
tribution. Let f : R" — R™ be continuous. Then f(X,) converges to f(X) in

distribution.
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4 Prohorov’s Theorem

In the previous section, we discussed how to check if a sequence of probability mea-
sure {p, } converges weakly to a probability measure y by introducing the concept of
convergence-determining class (Definition 5). But how do we know if {1, } converges

weakly in the first place? We first introduce the notion of relative compactness.

Definition 6 (Relatively Compact): Let P be a family of probability mea-
sures defined on (S,S). Then we say that P is relatively compact if for any
sequence in P, there exists a subsequence that converges weakly to some

probability measure.
Let us recall a result from probability theory:

Theorem 9 (Helly’s Selection Theorem): Let {u,}22,; be a sequence
of sub-probability measures on (R, B(R)). Then there exists a subsequence
{n, 32, and a sub-probability measure x such that

n(a,b] — u(a, b

for all a,b € [—o00,00] such that p(d(a,b]) = 0. We say that p,, converges
vaguely to u.

Remark: If a sequence of sub-probability measure {yu,} converges vaguely to a p,
then such p is unique. Say u, converges vaguely to v1 and v5. Then vy and o

agrees on the m-system:
{(a,b] : 11(9(a,b]) = 0 = v2(9(a, b]) = 0},

which generates B(R).

Proof. Let F,, denote the cumulative distribution function corresponding to .
Enumerate the set of all rational numbers {¢;}3°,. By Bolzano Weierstrass Theorem,
there exists a subsequence of {F,}, {Fix} such that {Fi;(¢q1)} converges to some
point a; € [0,1]. Further from this subsequence, there exists a subsequence {Fyy}
such that {Fb,(g2)} converges to some ap € [0,1]. Iteratively, we have for all g;,
sequences {F};} such that {Fj;(q;)} converges to some point a;, and that {Fj;} is
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a subsequence of {F{;_);}. Now consider the sequence {G}32; = {Fkx}3—;- Then
Gi(gj) — a; for all ¢; € Q. Now define for all x € R,

G(x) = inf{a; : j such that ¢; > z}.

Then G(z) is nondecreasing and right continuous. Moreover, G(g;) = a; for all
j € N. Hence, Gi(q) — G(q) for all ¢ € Q. Our proof is done if we can show that
Gi(z) — G(z) for all  such that G is continuous. Let z be a point at which G is

continuous. Let € > 0. Then there exists ¢q,¢ € Q so close to z such that

G(z) —e<G(q) <G(x) <G(¢) <G(x) +e.

For all k,
Gr(q) < Gi(z) < Gr(q).

Taking k — oo, we have Gi(q) — G(q) and Gi(¢') — G(¢'), and thus
G(z) — € < liminf Gi(z) < limsup Gi(z) < G(x) + e.
Since € is arbitrary, we have

lim Gg(z) = G(x).

k—o0

O]

Therefore, any sequence of probability measures {u,} are guaranteed to have
a subsequence that converges to a sub-probability measure. However, it is not

guaranteed that such measure is a probability measure.

Example 4.1: Consider the sequence of probability measure {d,}°2, defined on
(R, B(R)), where 4, is the probability that assigns probability 1 to the point n.
{0n} converges vaguely to u that assigns probability 0 to any set. In this case,

measure is escaping to infinity.

Example 4.2: Let {py, }22 ; be the sequence of probability measure that has uniform
distribution on [—n,n]. Then u, converges vaguely to p that assigns probability 0

to any set. In this case, measure simply evaporates.

Hence, we need conditions on {u,}72, that guarantees that measures do not
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escape or evaporate. Moreover, for probability measures defined on (C,C), we don’t

even have Theorem 9 to ensure vague convergence.

Example 4.3: Consider {d,,}72; defined by ¢, assigning probability 1 to the con-
tinuous function z, that increases linearly on [0,1/n] and decreases linearly on
[1/n,2/n], and stays at 0 to the right of 2/n. Let g be the probability measure that
assigns probability 1 to the constant 0 function. Note that for any ¢y, ..., € [0, 1],

In(A) — dp(A),

where A = {f € C: (t1,...,tx) € H} for some H € R¥. However, since d(z,,0) = 1
for all n, z, # 0, and hence J,, & dg. This shows that the collection Cg of finite

dimensional sets is a separating class, but not a convergence determining class.

However, if we do know that {P,} is relatively compact, and P, (A) — P(A) for
all A € Cr, then we are guaranteed that P,, = P. For any subsequence of { P, }, say
{P}}, there exists {P/, } that converges to some probability measure P’. But then
P’ and P must agree on the separating class Cr, and so P = P’.

Now suppose we know that a sequence of probability measures {P,,}>2; on (C,C)
is relatively compact, and that for all ¢1, ..., t; € [0, 1], there exists some probability
on (R¥, B(R¥)) such that

measure gy, ...t

-1
Pn ﬂ-tl,...,tk = Mty oty -

We can then conclude that there exists a probability measure P on (C,C) such that

its finite dimensional distribution
-1 .
Pﬁtl,u.,tk = Mty gty

Definition 7 (Tightness): We say that a family P of probability measures
defined on (5, S) is tight if for every e there exists a compact set K C .S such
that

P(K)>1—e¢

for all P € P.
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Theorem 10 (Prohorov’s Theorem): Let P be a family of probability
measures defined on a metric space (S,S). If P is tight, then it is relatively

compact. If (S,S) is separable and complete, the converse also holds.

Proof. Suppose (S, S) is separable and complete and that P is relatively compact.

Statement 1: For any open sets {Gy,} such that G,, 1S and € > 0, there exists N
such that for all n > N, P(G,)) > 1 — ¢ for all P € P.

proof of claim. Suppose this is not true. Then for each n, we have some P, € P
such that P,,(G),) < 1—e. Since P is relatively compact, there exists a subsequence
{Pp,} of {P,} that weakly converges to some probability measure Q. Fixing any n,
for all n; > n,

P, (Gn) <Py, (Gp,)) <1—e.

By Theorem 4,
Q(Gy) <liminfP,,(G,) <1 —e.

And since G, 1 S, we reach Q(S) <1 —e. A contradiction. O

Fix € > 0. Now for each k let {A;}°; be a sequence of open balls with radius
1/k that covers S. Such sequence can be found since S is separable. By the claim
above, for each k, there exists ny, such that P({J,., Ai) > 1—¢/2" for all P € P.
The set

1<ny

A= U A

E>1i<ny

is a totally bounded set. Since S is complete, the closure K of A is compact.
Moreover, P(K) > 1 — e for all P € P.

Now we prove the opposite direction. Suppose P is tight on a metric space
(S,S). Let {P,} be a sequence of P. We want to find a subsequence {P,,} and
construct a probability measure () such that P,, = Q.

Finding the subsequence: Choose compact sets K, in such a way that
P(K,) > 1—1/u for all P € P. The set |J, K, is separable. And hence there

exists a countable collection A of open sets that satisfies the following property:
For any open G and x € |J, Ky, there exists A € A such that z € A C A C G.

Define ‘H to be the set that consists of
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@ and finite unions of the form A N K, where A € A.

Note that H is countable. Therefore, using the diagonal method, we can find a
subsequence {P,,} such that {P,,(H)} converges for all H € H. Define

a(H) =limP,, (H).
(2
Our goal is to construct a probability measure P such that

P(G) = ;g%a(H)

for any open set GG. If we succeed in doing so, then for any open set GG, observe that
liminf P, (G) > a(H)
1
for all H C G, and so

liminf P, (G) > sup a(H) = P(G).
¢ HCG

By Theorem 4, we can then conclude that P,,, = P.
Construction of P: Note that H is closed under finite unions. Also, o(H)

satisfies:
o a(Hy) < «a(Hp) if Hy C Hs.
o o(HiUH>)=a(H)+ a(Hy) for all Hy, Hs.
o a(HyUH>) < a(Hy)+ a(Hs).
e a(@)=0.
For any open sets GG, define

B(G) = Elé%a(H)-

Finally, for any M € S, define

v(M) = inf B(G).

We want to prove two things. First, v is an outer measure. Suppose we succeed in

Page 15 of 18



doing so. Recall that the set
M={McCS:yA) =y(MNA)+~y(M°NA)forall AC S}

is a o-field, and that « is a measure when restricted on M. The second thing we
want to prove is that all closed sets are in M. If that holds, we can then conclude
that & € M. This means that the restriction of v to S is a measure. Let us call it
P. P(G) =~v(G) = B(G) for all open G. And so

P(S)=pB(5) = Zlé% alH) > sgp a(Ky) > Sgp(l —u ) =1.

(Note that K,’s are in H.) Therefore, P is indeed a probability measure.

Statement 2: If F' C G where F is closed and G is open, and if ' C H for some
H € H, then
FCcHycdG

for some Hy € H.

Proof. Since F is closed and is contained in some K, it is compact. For each z € F,
there exists A, C A such that

re A, C A, CQG.

There exists finitely many A,’s, say {A;}!" ; that covers F.. Then we have

Statement 3: v is an outer measure on S.

Proof. We first prove that 3 is finitely subbadditive on the open sets. Let H C
G1 UGy where H € H and G1, G5 are open. Define

Fy={xe€H:px,G) >
Fy={x € H:p(z,GS) >
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Then Fy C Gy and F» C Gs. If not, say € Fy but not in G, then z € G3. Since G5
is closed, p(z,G§) = 0 < p(z,GS), a contradiction. By Statement 2, F} C H; C Gy
and Fy C Hy C G2 for some H; € ‘H and Hy; € H. But we know that

a(H) < a(Hy U Hy) < a(H1) + a(Hz) < B(G1) + B(Ga).

And so

B(G1UG2) = sup «(H) < B(Gr) + B(G2).
HCG1UGo

Next, we prove that 8 is countably subadditive on the open sets. Let H C
U2, G; where H € H and G;’s are open. Since H is compact, there exists n such
that H C |J_; G;. But by finite subadditivity,

n

BH) <3 B(G) < Y BG).
=1

i=1

Finally, we can prove that ~ is an outer measure. Clearly it is monotone. We now
prove that it is countably subadditive. Let {M;}5°; be subsets of S. By definition
of ~y, for each i, there exists open G; D M, such that

y(M;) > B(Gy) + ¢/2".

Then we have

o0

0% (U MZ> <p ( G¢> < ZB(Gz) < Z’y(Ml) + %
i=1 i=1 i=1

= =1

Since this holds for all €, we conclude that

Y (U Mi) < (M),
=1 =1
O

Statement 4: The set of all closed sets is contained in the collection M of ~-

measurable sets.

Proof. We first prove that 8(G) > v(FNG) + v(F°NG) when F is closed and G
is open. Fix € > 0. Observe that F° N G is open. Hence, there exists H1 C F°*NG
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such that
a(Hy) > B(F°NG)—e=~v(F°NG) —e.

Since H; is compact, H{ N G is open. Hence, there exists Hy C Hf N G such that
a(Ho) = BUHE N G) - € > 1(FNG) — e
Since Hy and Hy are disjoint, and both are in G,
B(G) > a(Hy U Hy) = a(Hy) + a(Hp) > v(F°NG) +v(FNG) — 2e.

Since € is arbitrary,
B(G) > 1(FNG) ++(F° N Q).

Finally, we prove that v(M) > ~(F N M) + ~v(F°N M) for all closed F. Fix € > 0.
There exists an open set G such that G O M, and (M) > ~v(G) —e.

V(M) 2 B(G) —e=y(FNG)+y(FNG) —e
>y(FNM)+~yFNM)—e.

Since € is arbitrary, we have that
V(M) = ~(F N M) +~(FNM).

Y(M) <~y(FNM)+~(F¢nN M) follows directly from Statement 3. O
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