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1 Introduction

Let {Pn}∞n=1 be a sequence of probability measures on a probability space. What do
we mean by Pn converges to P? In this note, we introduce basic concepts of weak
convergence which are used throughout the literature of empirical processes.

2 Measures on a Metric Space

We start from introducing some properties of a probability measure defined on a
metric space. Let S denote a metric space and S denote the Borel σ-algebra.

We say that a probability measure P defined on a topological space equipped
with the Borel σ-algebra (T,B(T )) is regular if for any ϵ > 0 and A ∈ B(T ), there
exists a closed set F and an open set G such that

F ⊂ A ⊂ G, P(G− F ) < ϵ.

On the other hand, we say that P is tight if there exists a compact set K such that

P(K) > 1− ϵ.

Theorem 1: Any probability measure defined on a metric space (S,S) is
regular.

Proof. For any closed set F , consider the sequence of open set

Gϵ = {x ∈ S : d(x, F ) < ϵ}.
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Since F is closed, Gϵ ↓ F as ϵ → 0. Therefore, P(Gϵ − F ) → 0 by the continuity of
probability measures. Since S is generated by closed sets in S, by checking all sets
A ⊂ S that satisfy the asserted property is a sigma-field, the proof is done.

There is an important implication of Theorem 1: to check that two probability
measures on a metric space coincide, it suffices to check whether they coincide on
open sets (closed sets).

Theorem 2: Probability measures P and Q coincide if and only if for any
bounded and continuous function f : (S,S) → R,∫

S
f dP =

∫
S
f dQ .

Proof. Let us apply the conclusion we just obtained. Let F be a closed set, and
1F its indicator function. We can approximate 1F with a continuous and bounded
functions defined by

fϵ(x) = (1− d(x, F )/ϵ)+.

fϵ converges pointwise to 1F since F is closed. By Bounded Convergence Theorem,∫
fϵ(x)P(dx) −→

∫
1F P(dx) = P(F ),

∫
fϵ(x)Q(dx) −→ Q(F ).

But
∫
fϵ(x)P(dx) =

∫
fϵ(x)Q(dx) for all ϵ, and thus we must have P(F ) = Q(F ).

Now we introduce another important concept: tightness. We say that a proba-
bility measure P define on a topological space is tight if for any ϵ > 0, there exists
a compact set K such that

P(K) > 1− ϵ.

Before we dive into a result regarding the tightness of a probability measure on
a metric space, let us review some concepts in topology.

We say that a topological space is second countable if there exists a countable
basis for the topology; Lindelöff if any open cover of a subset A ⊂ S admits a count-
able subcover; separable if there exists a countable and dense subset D. (“Dense”
means that any open subset of S includes an element of D.)
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Proposition 1: A metric space S is second countable if and only if it is
Lindelöff if and only if it is separable.

We say that a metric space (S, d) is totally bounded if for any ϵ > 0, there exists
a finite number of open balls whose center lies in S and their union contains S.

Theorem 3: If a metric space (S,S) is complete and separable, then any
probability measure on (S,S) is tight.

Proof. Since S is separable, there exists a countable and dense subset {xi}∞i=1. Note
that for any k, the collection of 1/k open balls {B(xi, 1/k)}∞i=1 covers S. Let ϵ > 0.
For each, choose nk ∈ N such that

P

 ∪
i≤nk

B(xi, 1/k)

 > 1− ϵ/2k.

Now the set ∩
k≥1

∪
i≤nk

B(xi, 1/k)

is totally bounded. Write Ak =
∪

i≤nk
B(xi, 1/k). Observe that

P

∩
k≥1

Ak

 = P

∪
k≥1

Ac
k

c ≥ 1−
∑
k≥1

P(Ac
k) > 1− ϵ.

Since S is complete, the closure K of
∩

k≥1

∪
i≤nk

B(xi, 1/k) is compact. And clearly
P(K) > 1− ϵ.

Definition 1 (Separating Class): Let (S,S) be a measured space. A sub-
class A of S is called a separating class if any two probability measures coincide
on S if and only if they coincide on A.

As we mentioned, the class of closed sets is a separating class for the Borel σ-
algebra. Indeed, by Dynkin’s π-λ Lemma, any π-system that generates the Borel
σ-algebra is a separating class.

Example 2.1: Let R∞ be the space of sequences of real numbers. Recall that the
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product topology of R∞ is the one generated by the basis:

B = {O1 ×O2...On × R× R... : O′
isare open, n < ∞}.

Hence, R∞ is indeed a metric space. The product topology is separable. The
countable collection of points

Q = {(q1, ..., qn, 0, ..., 0, ....) : qi ∈ Q, n < ∞}

is dense in R∞. Define a metric on R by b(xi, yi) = d(xi, yi) ∧ 1. We can define a
metric on R∞

ρ(x, y) =

∞∑
i=1

2−ib(xi, yi).

Then indeed this metric induces the product topology. Therefore, R∞ is a metric
space. Also, with this metric,

x −→ y ⇐⇒ xi −→ yi for all i.

Hence, R∞ is complete. We conclude that R∞ is a separable and complete metric
space. By Theorem 3, any probability measure on R∞ is tight.

Since R∞ is separable, it is also Lindelöff. This means that the σ-algebra gener-
ated by B is indeed the Borel σ-algebra. It is also clear that B is a π-system. Hence,
the basis B is a separating class.

Example 2.2: Let C = C[0, 1] be the set of continuous functions f on [0, 1]. Define
the norm of f as ∥f∥ = supx∈[0,1] |f(x)|, and give it the uniform metric,

ρ(f, g) = ∥f − g∥ .

We show that C is separable. Let Dk be the set of polygonal functions that are linear
over each subinterval [(i−1)/k, i/k] and have rational values at the endpoints. Since
each Dk is countable, the set D =

∪
k≥1Dk is also countable. To show that D is

dense, for given f and ϵ, choose k so large so that the partition of [0, 1] is so fine,
that within each subinterval, |f(x) − f(y)| < ϵ for any two points x and y in that
subinterval. By choosing the values of the endpoints to be rational numbers very
close to the original value of f on the endpoints, we can construct a g ∈ D such that
ρ(f, g) < ϵ. Recall that C is also complete. Therefore, any probability on the Borel
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σ-algebra of C is tight.
Write C as the Borel σ-algebra of C. Define the projection of functions on

t1, ..., tk ∈ [0, 1] as
πt1,...,tk(f) = (f(t1), ..., f(tk)).

π : C → Rk is a continuous function, and thus also measurable. In C, we say
that a set A is finite-dimensional if there exists t1, ..., tk and H ⊂ Rk such that
A = π−1

t1,...,tk
(H). Namely,

A = {f ∈ C : (f(t1), f(t2), ..., f(tk)) ∈ H}.

Now for any set π−1
t1,...,tk

(H) and s1, ..., sl ∈ [0, 1], the set can be written as
π−1
t1,...,tk,s1,...,sl

(H ′) for some H ′ ⊂ Rk+l. Hence, for any

π−1
t1,...,tk

(H1) ∩ π−1
s1,...,sl

(H2) = π−1
t1,...,tk,s1,...,sl

(H ′
1) ∩ π−1

t1,...,tk,s1,...,sl
(H ′

2)

= π−1
t1,....,tk,s1,...sl

(H ′
1 ∩H ′

2).

This proves that the collection of finite-dimensional sets is a π-system. Call such
collection CF . Now each closed ball in C can be written as a countable intersection
of sets in CF

B(f, ϵ) =
∩
r∈Q

{g : |g(r)− f(r)| ≤ ϵ}.

Hence, σ(CF ) contains all closed balls, and thus all open balls. Since C is separa-
ble and thus Lindelöff, σ(CF ) contains all open sets. Since CF is a π-system and
σ(CF ) = C, CF is a separating class.

3 Weak Convergence of Probability Measures

Definition 2 (Weak Convergence): We say that a sequence of probability
measure {Pn} defined on (S,S) converges weakly to a probability measure P ,
denoted as Pn ⇒ P , if for any bounded and continuous real function f we
have ∫

S
f dPn −→

∫
S
f dP .
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Definition 3: Let Xn’s and X be random variables with realized values on
(S,S ′). Let µn(µ) be the measure on S ′ induced by Xn(X). We say that Xn

converge to X weakly if µn converge to µ weakly.

We start from some simple examples to illustrate the ideas behind the definition.

Example 3.1: On an arbitrary metric space S, let δx(A) = 1A(x) be the probability
measure that assigns unit mass on the point x. If xn → x and f is continuous, then
f(xn) → f(x), and thus δxn ⇒ δx. On the other hand if xn ̸→ x, there exists
ϵ > 0 such that d(xn, x) > ϵ for infinitely many n’s. Simply choose the bounded
and continuous function f(y) = (1− d(y, x)/ϵ)+. Then f(x) = 1 but f(xn) = 0 for
infinitely many n’s. This shows that δxn ̸⇒ δx. Therefore, δxn ⇒ δx if and only if
xn → x.

Example 3.2: Let S = [0, 1] with the usual metric. Consider a sequence {An} of
sets An = {xkn}rnk=1 for each n. Suppose {An} is asymptotically uniform in the sense
that for any subinterval J ⊂ [0, 1],

1

rn
#{k : xnk ∈ J} −→ |J |.

Define Pn to be uniform on An and P be the Lebesgue measure on [0, 1]. Then
Pn ⇒ P. Let f be continuous and bounded defined on [0, 1]. f is Lebesgue integrable
and also Reimann integrable. For any ϵ > 0, there exists fine enough partition
{J1, ..., Jm} such that the upper Riemann sum and the lower Riemann sum are
within ϵ of the integral.

m∑
i=1

vi|Ji|+ ϵ ≥
∫ 1

0
f dP,

m∑
i=1

vi|Ji| − ϵ ≤
∫ 1

0
dP .

Asymptotic on n, ∫ 1

0
f dPn =

rn∑
k=1

1

rn
f(xnk)

≤
m∑
i=1

1

rn
#{k : xnk ∈ Ji}vi

−→
m∑
i=1

|Ji|vi ≤
∫ 1

0
f dP+ϵ.
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Similarly, one can prove
∫ 1
0 f dPn is asymptotically larger or equal to

∫ 1
0 f dP. This

proves that
∫ 1
0 f dPn →

∫ 1
0 f dP. Hence, Pn ⇒ P.

Definition 4 (P-continuity Set): We call a set A ⊂ S a P-continiuty set,
if P(∂A) = 0, where ∂A denotes the boundary of A. (∂A = A− int(A)).

The following theorem provides useful conditions equivalent to weak convergence.

Theorem 4 (Portmanteau Theorem): Suppose {Pn} and P are probabil-
ity measures defined on (S,S). These conditions are all equivalent to Pn ⇒ P:

(i) For any continuous and bounded real f ,
∫
S f dPn →

∫
S f dP.

(ii) For any uniformly continuous and bounded real f ,
∫
S f dPn →

∫
S f dP.

(iii) lim supn→∞ Pn(F ) ≤ P(F ) for all closed F .

(iv) lim infn→∞ Pn(G) ≥ P(G) for all open G.

(v) Pn(A) → P(A) for all P-continiuty sets A.

Recall that in Example 3.1, we see that δxn ⇒ δx ⇐⇒ xn → x. If we choose
A = {x}, then apparently δxn(A) = 0 ̸→ 1 = δx(A). This does not contradict with
Theorem 4 because {x} is not a P-continuity set.

Proof.

• (i) =⇒ (ii): Trivial

• (ii) =⇒ (iii): Let F be a closed set in S. Set for all ϵ > 0, fϵ(x) =

(1 − d(x, F )/ϵ)+ and Fϵ = {x : d(x, F ) < ϵ}. Since F is closed, Fϵ ↓ F as
ϵ → 0. Also,

∫
fϵ dPn ≥ Pn(F ) for all n. Fix δ > 0. There exists a small

enough ϵ such that P(Fϵ) ≤ P(F ) + δ. Note that

Pn(F ) ≤
∫

fϵ dPn →
∫

fϵ dP ≤ P(Fϵ) ≤ P(F ) + δ

=⇒ lim sup
n→∞

Pn(F ) ≤ P(F ) + δ.

• (iii) =⇒ (iv): It follows easily from complement arguments.
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• (iii), (iv) =⇒ (v): Since A is a P -continuity set, P(A) = P(A) = P(intA).
We then have

lim sup
n→∞

Pn(A) ≤ P(A) = P(A)

lim inf
n→∞

Pn(intA) ≥ P(intA) = P(A).

This then implies

lim sup
n→∞

Pn(A) = lim inf
n→∞

Pn(A) = P(A).

• (v) =⇒ (i): By linearity of integrals, we can assume f is bounded between 0

and 1. Observe that∫
S
f dP =

∫ 1

0
P(f > t) dt,

∫
S
f dPn =

∫ 1

0
Pn(f > t) dt.

Since f is continuous, ∂{s : f(s) > t} ⊂ {s : f(s) = t}. But P(s : f(s) = t) can
be strictly positive only for countably many t’s. By (v), Pn(f > t) → P(f > t)

for almost every t. Hence, by BCT,∫ 1

0
Pn(f > t) dt →

∫ 1

0
P(f > t) dt.

It will be nice if we only need to check whether Pn converges to P on a certain
class of sets in S to unsure that Pn ⇒ P.

Theorem 5: Suppose (i) that AP is a π-system and (ii) that each open set
is a countable union of AP sets. If Pn(A) → P(A) for every A in AP , then
Pn ⇒ P.

Theorem 6: Suppose (i) that AP is a π-system and (ii) that S is separable,
and for every x ∈ S and ϵ > 0, there exists A ∈ AP such that

x ∈ int(A) ⊂ A ⊂ B(x, ϵ).
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If Pn(A) → P(A) for all A ∈ AP , then Pn ⇒ P.

Definition 5 (Convergence-Determining Class): We call a subclass A of
S a convergence-determining class if, for any {Pn} and P, Pn(A) → P(A) for
all P -continuity A in A implies Pn ⇒ P.

To ensure that a collection of A is convergence-determining, we must make sure
that the class of P-continiuty sets AP in A satisfies the conditions of Theorem 6 for
any P. Fix any x ∈ S and ϵ > 0. Let Ax,ϵ denote the collection of sets in A such
that

x ∈ int(A) ⊂ A ⊂ B(x, ϵ),

and let ∂Ax,ϵ denote the collection of their boundaries.

Theorem 7: Suppose that (i) that A is a π-system and (ii) that S is separable
and for each x ∈ S and ϵ, ∂Ax,ϵ either contains ∅ or contains uncountably
many disjoint sets. Then A is a convergence-determining class.

Proof. Let {Pn} and P be given arbitrary. Let AP denote the collection of P-
continuity sets in A. Apparently, AP is a π-system. Now fix x ∈ S and ϵ > 0. Since
∂Ax,ϵ must contain a set E with P(E) = 0, this means that there is a P-continiuty
set in Ax,ϵ. Hence, AP satisfies the conditions in Theorem 6. This shows that A is
a convergence-determining class.

Example 3.3: The collection of A finite intersections of open balls form a convergence-
determining class. Because

∂B(x, r) ⊂ {y : d(x, y) = r},

and thus either ∅ is in ∂Ax,ϵ or there are uncountably many disjoint sets in ∂Ax,ϵ.

Example 3.4: Consider the collection of rectangles in Rk, sets of the form {x : b <

x ≤ a}. The collection satisfies Theorem 7, and hence is a convergence-determining
class.

Example 3.5: In Rn, the class A of sets

Qx = {y : y ≤ x}
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is also a convergence-determining class. Suppose Pn(Qx) → P(Qx) for each Qx with
P(∂Qx) = 0. For each 1 ≤ i ≤ k, define Ei = {t : P{x : xi = t} > 0}. Ei is at most
countable. Hence, there are uncountably many rectangles (in the form (a, b]) such
that each vertex x = (x1, ..., xk) satisfy xi /∈ Ei. Let AP be the collection of such
rectangles. Such collection satisfies the condition in Theorem 6. For any A ∈ AP ,
for each vertex x of A, P(∂Qx) = 0. A can be written as inclusion and exclusions
of the Qx’s. It then follows that Pn(A) → P(A) by the inclusion-exclusion formula.
And thus Pn ⇒ P.

There is another way to state that A is a convergence-determining class. For
any probability measure P, define F (x) = P{y : y ≤ x}. Then Pn ⇒ P if and only
if Fn(x) → F (x) for all x at which F is continuous.

Hence, for Rn-valued random variables Xn, saying that Xn converges weakly to
X is equivalent to saying that Xn converges to X in distribution.

Suppose that h : (S,S) → (S′,S ′) is a measurable function that maps S into S′.
For any probability measure P on (S,S), h then induces a measure on S′, Ph−1,
defined by

Ph−1(A) = P(h−1(A)).

Theorem 8 (Continuous Mapping Theorem): Let h : (S,S) → (S′,S ′)

be a continuous function, and suppose Pn ⇒ P on (S,S). Then Pn h
−1 ⇒ h−1

on (S,S).

Proof. Let f be a continuous function from (S′,S ′) into (R,R). Since f and h are
continuous, f ◦h : (S,S) → (R,R) is also continuous. Hence, by change of variable,∫

S′
f dPn h

−1 =

∫
S
f ◦ h dPn −→

∫
S
f ◦ h dP =

∫
S′
f dPh−1.

Corollary: Let Xn’s and X be Rn-valued, and suppose Xn converges to X in dis-
tribution. Let f : Rn → Rm be continuous. Then f(Xn) converges to f(X) in
distribution.
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4 Prohorov’s Theorem

In the previous section, we discussed how to check if a sequence of probability mea-
sure {µn} converges weakly to a probability measure µ by introducing the concept of
convergence-determining class (Definition 5). But how do we know if {µn} converges
weakly in the first place? We first introduce the notion of relative compactness.

Definition 6 (Relatively Compact): Let P be a family of probability mea-
sures defined on (S,S). Then we say that P is relatively compact if for any
sequence in P, there exists a subsequence that converges weakly to some
probability measure.

Let us recall a result from probability theory:

Theorem 9 (Helly’s Selection Theorem): Let {µn}∞n=1 be a sequence
of sub-probability measures on (R,B(R)). Then there exists a subsequence
{µnk

}∞k=1 and a sub-probability measure µ such that

µn(a, b] −→ µ(a, b]

for all a, b ∈ [−∞,∞] such that µ(∂(a, b]) = 0. We say that µnk
converges

vaguely to µ.

Remark: If a sequence of sub-probability measure {µn} converges vaguely to a µ,
then such µ is unique. Say µn converges vaguely to ν1 and ν2. Then ν1 and µ2

agrees on the π-system:

{(a, b] : ν1(∂(a, b]) = 0 = ν2(∂(a, b]) = 0},

which generates B(R).

Proof. Let Fn denote the cumulative distribution function corresponding to µn.
Enumerate the set of all rational numbers {qi}∞i=1. By Bolzano Weierstrass Theorem,
there exists a subsequence of {Fn}, {F1k} such that {F1k(q1)} converges to some
point a1 ∈ [0, 1]. Further from this subsequence, there exists a subsequence {F2k}
such that {F2k(q2)} converges to some a2 ∈ [0, 1]. Iteratively, we have for all qj ,
sequences {Fjk} such that {Fjk(qj)} converges to some point aj , and that {Fjk} is
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a subsequence of {F(j−1)k}. Now consider the sequence {Gk}∞k=1 = {Fkk}∞k=1. Then
Gk(qj) → aj for all qj ∈ Q. Now define for all x ∈ R,

G(x) = inf{aj : j such that qj ≥ x}.

Then G(x) is nondecreasing and right continuous. Moreover, G(qj) = aj for all
j ∈ N. Hence, Gk(q) → G(q) for all q ∈ Q. Our proof is done if we can show that
Gk(x) → G(x) for all x such that G is continuous. Let x be a point at which G is
continuous. Let ϵ > 0. Then there exists q, q′ ∈ Q so close to x such that

G(x)− ϵ ≤ G(q) ≤ G(x) ≤ G(q′) ≤ G(x) + ϵ.

For all k,
Gk(q) ≤ Gk(x) ≤ Gk(q

′).

Taking k → ∞, we have Gk(q) → G(q) and Gk(q
′) → G(q′), and thus

G(x)− ϵ ≤ lim inf Gk(x) ≤ lim supGk(x) ≤ G(x) + ϵ.

Since ϵ is arbitrary, we have

lim
k→∞

Gk(x) = G(x).

Therefore, any sequence of probability measures {µn} are guaranteed to have
a subsequence that converges to a sub-probability measure. However, it is not
guaranteed that such measure is a probability measure.

Example 4.1: Consider the sequence of probability measure {δn}∞n=1 defined on
(R,B(R)), where δn is the probability that assigns probability 1 to the point n.
{δn} converges vaguely to µ that assigns probability 0 to any set. In this case,
measure is escaping to infinity.

Example 4.2: Let {µn}∞n=1 be the sequence of probability measure that has uniform
distribution on [−n, n]. Then µn converges vaguely to µ that assigns probability 0
to any set. In this case, measure simply evaporates.

Hence, we need conditions on {µn}∞n=1 that guarantees that measures do not
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escape or evaporate. Moreover, for probability measures defined on (C, C), we don’t
even have Theorem 9 to ensure vague convergence.

Example 4.3: Consider {δn}∞n=1 defined by δn assigning probability 1 to the con-
tinuous function zn that increases linearly on [0, 1/n] and decreases linearly on
[1/n, 2/n], and stays at 0 to the right of 2/n. Let δ0 be the probability measure that
assigns probability 1 to the constant 0 function. Note that for any t1, ..., tk ∈ [0, 1],

δn(A) −→ δ0(A),

where A = {f ∈ C : (t1, ..., tk) ∈ H} for some H ∈ Rk. However, since d(zn, 0) = 1

for all n, zn ̸→ 0, and hence δn ̸⇒ δ0. This shows that the collection CF of finite
dimensional sets is a separating class, but not a convergence determining class.

However, if we do know that {Pn} is relatively compact, and Pn(A) → P(A) for
all A ∈ CF , then we are guaranteed that Pn ⇒ P. For any subsequence of {Pn}, say
{P ′

n}, there exists {P ′
nk} that converges to some probability measure P′. But then

P′ and P must agree on the separating class CF , and so P = P′.
Now suppose we know that a sequence of probability measures {Pn}∞n=1 on (C, C)

is relatively compact, and that for all t1, ..., tk ∈ [0, 1], there exists some probability
measure µt1,...,tk on (Rk,B(Rk)) such that

Pn π
−1
t1,...,tk

⇒ µt1,...,tk .

We can then conclude that there exists a probability measure P on (C, C) such that
its finite dimensional distribution

Pπ−1
t1,...,tk

= µt1,...,tk .

Definition 7 (Tightness): We say that a family P of probability measures
defined on (S,S) is tight if for every ϵ there exists a compact set K ⊂ S such
that

P(K) > 1− ϵ

for all P ∈ P .
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Theorem 10 (Prohorov’s Theorem): Let P be a family of probability
measures defined on a metric space (S,S). If P is tight, then it is relatively
compact. If (S,S) is separable and complete, the converse also holds.

Proof. Suppose (S,S) is separable and complete and that P is relatively compact.

Statement 1: For any open sets {Gn} such that Gn ↑ S and ϵ > 0, there exists N

such that for all n ≥ N , P(Gn) ≥ 1− ϵ for all P ∈ P .

proof of claim. Suppose this is not true. Then for each n, we have some Pn ∈ P
such that Pn(Gn) ≤ 1− ϵ. Since P is relatively compact, there exists a subsequence
{Pni} of {Pn} that weakly converges to some probability measure Q. Fixing any n,
for all ni > n,

Pni(Gn) ≤ Pni(Gni) ≤ 1− ϵ.

By Theorem 4,
Q(Gn) ≤ lim inf

i
Pni(Gn) ≤ 1− ϵ.

And since Gn ↑ S, we reach Q(S) ≤ 1− ϵ. A contradiction.

Fix ϵ > 0. Now for each k let {Aki}∞i=1 be a sequence of open balls with radius
1/k that covers S. Such sequence can be found since S is separable. By the claim
above, for each k, there exists nk such that P(

∪
i≤nk

Aki) > 1− ϵ/2k for all P ∈ P .
The set

A =
∩
k≥1

∪
i≤nk

Aki

is a totally bounded set. Since S is complete, the closure K of A is compact.
Moreover, P(K) ≥ 1− ϵ for all P ∈ P .

Now we prove the opposite direction. Suppose P is tight on a metric space
(S,S). Let {Pn} be a sequence of P. We want to find a subsequence {Pni} and
construct a probability measure Q such that Pni ⇒ Q.

Finding the subsequence: Choose compact sets Ku in such a way that
P(Ku) ≥ 1 − 1/u for all P ∈ P . The set

∪
uKu is separable. And hence there

exists a countable collection A of open sets that satisfies the following property:

For any open G and x ∈
∪

uKu, there exists A ∈ A such that x ∈ A ⊂ A ⊂ G.

Define H to be the set that consists of
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∅ and finite unions of the form A ∩Ku where A ∈ A.

Note that H is countable. Therefore, using the diagonal method, we can find a
subsequence {Pni} such that {Pni(H)} converges for all H ∈ H. Define

α(H) := lim
i

Pni(H).

Our goal is to construct a probability measure P such that

P(G) = sup
H⊂G

α(H)

for any open set G. If we succeed in doing so, then for any open set G, observe that

lim inf
i

Pni(G) ≥ α(H)

for all H ⊂ G, and so

lim inf
i

Pni(G) ≥ sup
H⊂G

α(H) = P(G).

By Theorem 4, we can then conclude that Pni ⇒ P.
Construction of P: Note that H is closed under finite unions. Also, α(H)

satisfies:

• α(H1) ≤ α(H2) if H1 ⊂ H2.

• α(H1 ∪H2) = α(H1) + α(H2) for all H1,H2.

• α(H1 ∪H2) ≤ α(H1) + α(H2).

• α(∅) = 0.

For any open sets G, define
β(G) = sup

H⊂G
α(H).

Finally, for any M ∈ S, define

γ(M) = inf
M⊂G

β(G).

We want to prove two things. First, γ is an outer measure. Suppose we succeed in
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doing so. Recall that the set

M = {M ⊂ S : γ(A) = γ(M ∩A) + γ(M c ∩A) for all A ⊂ S}

is a σ-field, and that γ is a measure when restricted on M. The second thing we
want to prove is that all closed sets are in M. If that holds, we can then conclude
that S ⊂ M. This means that the restriction of γ to S is a measure. Let us call it
P. P(G) = γ(G) = β(G) for all open G. And so

P(S) = β(S) = sup
H⊂S

α(H) ≥ sup
u

α(Ku) ≥ sup
u
(1− u−1) = 1.

(Note that Ku’s are in H.) Therefore, P is indeed a probability measure.

Statement 2: If F ⊂ G where F is closed and G is open, and if F ⊂ H for some
H ∈ H, then

F ⊂ H0 ⊂ G

for some H0 ∈ H.

Proof. Since F is closed and is contained in some Ku, it is compact. For each x ∈ F ,
there exists Ax ⊂ A such that

x ∈ Ax ⊂ Ax ⊂ G.

There exists finitely many Ax’s, say {Ai}ni=1 that covers F . Then we have

F ⊂
n∪

i=1

(Ai ∩Ku) ⊂ G.

Statement 3: γ is an outer measure on S.

Proof. We first prove that β is finitely subbadditive on the open sets. Let H ⊂
G1 ∪G2 where H ∈ H and G1, G2 are open. Define

F1 := {x ∈ H : ρ(x,Gc
1) ≥ ρ(x,Gc

2)}

F2 := {x ∈ H : ρ(x,Gc
2) ≥ ρ(x,Gc

1)}.

Page 16 of 18



Then F1 ⊂ G1 and F2 ⊂ G2. If not, say x ∈ F1 but not in G1, then x ∈ G2. Since Gc
2

is closed, ρ(x,Gc
1) = 0 < ρ(x,Gc

2), a contradiction. By Statement 2, F1 ⊂ H1 ⊂ G1

and F2 ⊂ H2 ⊂ G2 for some H1 ∈ H and H2 ∈ H. But we know that

α(H) ≤ α(H1 ∪H2) ≤ α(H1) + α(H2) ≤ β(G1) + β(G2).

And so
β(G1 ∪G2) = sup

H⊂G1∪G2

α(H) ≤ β(G1) + β(G2).

Next, we prove that β is countably subadditive on the open sets. Let H ⊂∪∞
i=1Gi where H ∈ H and Gi’s are open. Since H is compact, there exists n such

that H ⊂
∪n

i=1Gi. But by finite subadditivity,

β(H) ≤
n∑

i=1

β(Gi) ≤
∞∑
i=1

β(Gi).

Finally, we can prove that γ is an outer measure. Clearly it is monotone. We now
prove that it is countably subadditive. Let {Mi}∞i=1 be subsets of S. By definition
of γ, for each i, there exists open Gi ⊃ Mi such that

γ(Mi) > β(Gi) + ϵ/2i.

Then we have

γ

( ∞∪
i=1

Mi

)
≤ β

( ∞∪
i=1

Gi

)
≤

∞∑
i=1

β(Gi) <
∞∑
i=1

γ(Mi) +
ϵ

2
.

Since this holds for all ϵ, we conclude that

γ

( ∞∪
i=1

Mi

)
≤

∞∑
i=1

γ(Mi).

Statement 4: The set of all closed sets is contained in the collection M of γ-
measurable sets.

Proof. We first prove that β(G) ≥ γ(F ∩ G) + γ(F c ∩ G) when F is closed and G

is open. Fix ϵ > 0. Observe that F c ∩G is open. Hence, there exists H1 ⊂ F c ∩G
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such that
α(H1) ≥ β(F c ∩G)− ϵ = γ(F c ∩G)− ϵ.

Since H1 is compact, Hc
1 ∩G is open. Hence, there exists H0 ⊂ Hc

1 ∩G such that

α(H0) ≥ β(Hc
1 ∩G)− ϵ ≥ γ(F ∩G)− ϵ.

Since H1 and H0 are disjoint, and both are in G,

β(G) ≥ α(H1 ∪H0) = α(H1) + α(H0) ≥ γ(F c ∩G) + γ(F ∩G)− 2ϵ.

Since ϵ is arbitrary,
β(G) ≥ γ(F ∩G) + γ(F c ∩G).

Finally, we prove that γ(M) ≥ γ(F ∩M) + γ(F c ∩M) for all closed F . Fix ϵ > 0.
There exists an open set G such that G ⊃ M , and γ(M) ≥ γ(G)− ϵ.

γ(M) ≥ β(G)− ϵ ≥ γ(F ∩G) + γ(F c ∩G)− ϵ

≥ γ(F ∩M) + γ(F c ∩M)− ϵ.

Since ϵ is arbitrary, we have that

γ(M) ≥ γ(F ∩M) + γ(F c ∩M).

γ(M) ≤ γ(F ∩M) + γ(F c ∩M) follows directly from Statement 3.
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