Basic Concepts in Weak Convergence

Chia-Min Wei

November 18, 2024

1 Introduction

Let ${P_n}_{n=1}^{\infty}$ be a sequence of probability measures on a probability space. What do we mean by P_n converges to P? In this note, we introduce basic concepts of weak convergence which are used throughout the literature of empirical processes.

2 Measures on a Metric Space

We start from introducing some properties of a probability measure defined on a metric space. Let *S* denote a metric space and *S* denote the Borel σ -algebra.

We say that a probability measure P defined on a topological space equipped with the Borel σ -algebra $(T, B(T))$ is *regular* if for any $\epsilon > 0$ and $A \in B(T)$, there exists a closed set *F* and an open set *G* such that

$$
F \subset A \subset G, \quad P(G - F) < \epsilon.
$$

On the other hand, we say that P is *t*ight if there exists a compact set *K* such that

$$
P(K) > 1 - \epsilon.
$$

Theorem 1: Any probability measure defined on a metric space (S, \mathcal{S}) is regular.

Proof. For any closed set *F*, consider the sequence of open set

$$
G_{\epsilon} = \{ x \in S : d(x, F) < \epsilon \}.
$$

Since *F* is closed, $G_{\epsilon} \downarrow F$ as $\epsilon \to 0$. Therefore, $P(G_{\epsilon} - F) \to 0$ by the continuity of probability measures. Since S is generated by closed sets in S , by checking all sets $A \subset S$ that satisfy the asserted property is a sigma-field, the proof is done. \Box

There is an important implication of [Theorem 1](#page-0-0): to check that two probability measures on a metric space coincide, it suffices to check whether they coincide on open sets (closed sets).

Theorem 2: Probability measures P and Q coincide if and only if for any bounded and continuous function $f : (S, \mathcal{S}) \to \mathbb{R}$,

$$
\int_S f \, d\,\mathbf{P} = \int_S f \, d\,\mathbf{Q} \, .
$$

Proof. Let us apply the conclusion we just obtained. Let *F* be a closed set, and $\mathbf{1}_F$ its indicator function. We can approximate $\mathbf{1}_F$ with a continuous and bounded functions defined by

$$
f_{\epsilon}(x) = (1 - d(x, F)/\epsilon)^{+}.
$$

 f_{ϵ} converges pointwise to $\mathbf{1}_F$ since F is closed. By Bounded Convergence Theorem,

$$
\int f_{\epsilon}(x) P(dx) \longrightarrow \int \mathbf{1}_F P(dx) = P(F), \quad \int f_{\epsilon}(x) Q(dx) \longrightarrow Q(F).
$$

But $\int f_{\epsilon}(x) P(dx) = \int f_{\epsilon}(x) Q(dx)$ for all ϵ , and thus we must have $P(F) = Q(F)$. \Box

Now we introduce another important concept: tightness. We say that a probability measure P define on a topological space is *tight* if for any $\epsilon > 0$, there exists a compact set *K* such that

$$
P(K) > 1 - \epsilon.
$$

Before we dive into a result regarding the tightness of a probability measure on a metric space, let us review some concepts in topology.

We say that a topological space is *second countable* if there exists a countable basis for the topology; *Lindelöff* if any open cover of a subset $A \subset S$ admits a countable subcover; *separable* if there exists a countable and dense subset *D*. ("Dense" means that any open subset of *S* includes an element of *D*.)

Proposition 1: A metric space *S* is second countable if and only if it is Lindelöff if and only if it is separable.

We say that a metric space (S, d) is totally bounded if for any $\epsilon > 0$, there exists a finite number of open balls whose center lies in *S* and their union contains *S*.

Theorem 3: If a metric space (S, \mathcal{S}) is complete and separable, then any probability measure on (S, \mathcal{S}) is tight.

Proof. Since *S* is separable, there exists a countable and dense subset $\{x_i\}_{i=1}^{\infty}$. Note that for any *k*, the collection of $1/k$ open balls ${B(x_i, 1/k)}_{i=1}^{\infty}$ covers *S*. Let $\epsilon > 0$. For each, choose $n_k \in \mathbb{N}$ such that

$$
P\left(\bigcup_{i\leq n_k} B(x_i, 1/k)\right) > 1 - \epsilon/2^k.
$$

Now the set

$$
\bigcap_{k\geq 1}\bigcup_{i\leq n_k}B(x_i,1/k)
$$

is totally bounded. Write $A_k = \bigcup_{i \leq n_k} B(x_i, 1/k)$. Observe that

$$
P\left(\bigcap_{k\geq 1} A_k\right) = P\left(\left(\bigcup_{k\geq 1} A_k^c\right)^c\right) \geq 1 - \sum_{k\geq 1} P(A_k^c) > 1 - \epsilon.
$$

Since *S* is complete, the closure *K* of $\bigcap_{k\geq 1} \bigcup_{i\leq n_k} B(x_i, 1/k)$ is compact. And clearly $P(K) > 1 - \epsilon$. \Box

Definition 1 (Separating Class): Let (S, S) be a measured space. A subclass *A* of *S* is called a separating class if any two probability measures coincide on *S* if and only if they coincide on *A*.

As we mentioned, the class of closed sets is a separating class for the Borel *σ*algebra. Indeed, by Dynkin's π - λ Lemma, any π -system that generates the Borel σ -algebra is a separating class.

Example 2.1: Let \mathbb{R}^{∞} be the space of sequences of real numbers. Recall that the

product topology of \mathbb{R}^{∞} is the one generated by the basis:

$$
\mathcal{B} = \{O_1 \times O_2...O_n \times \mathbb{R} \times \mathbb{R}...\; O_i'\text{sare open}, n < \infty\}.
$$

Hence, \mathbb{R}^{∞} is indeed a metric space. The product topology is separable. The countable collection of points

$$
\mathbf{Q} = \{ (q_1, ..., q_n, 0, ..., 0,) : q_i \in \mathbb{Q}, n < \infty \}
$$

is dense in \mathbb{R}^{∞} . Define a metric on \mathbb{R} by $b(x_i, y_i) = d(x_i, y_i) \wedge 1$. We can define a metric on R*[∞]*

$$
\rho(x,y) = \sum_{i=1}^{\infty} 2^{-i}b(x_i, y_i).
$$

Then indeed this metric induces the product topology. Therefore, \mathbb{R}^{∞} is a metric space. Also, with this metric,

$$
x \longrightarrow y \iff x_i \longrightarrow y_i \text{ for all } i.
$$

Hence, \mathbb{R}^{∞} is complete. We conclude that \mathbb{R}^{∞} is a separable and complete metric space. By [Theorem 3](#page-2-0), any probability measure on \mathbb{R}^{∞} is tight.

Since \mathbb{R}^{∞} is separable, it is also Lindelöff. This means that the σ -algebra generated by *B* is indeed the Borel σ -algebra. It is also clear that *B* is a π -system. Hence, the basis β is a separating class.

Example 2.2: Let $C = C[0, 1]$ be the set of continuous functions f on [0,1]. Define the norm of *f* as $||f|| = \sup_{x \in [0,1]} |f(x)|$, and give it the uniform metric,

$$
\rho(f,g) = \|f - g\|.
$$

We show that *C* is separable. Let D_k be the set of polygonal functions that are linear over each subinterval [(*i−*1)*/k, i/k*] and have rational values at the endpoints. Since each D_k is countable, the set $D = \bigcup_{k \geq 1} D_k$ is also countable. To show that D is dense, for given f and ϵ , choose k so large so that the partition of [0, 1] is so fine, that within each subinterval, $|f(x) - f(y)| < \epsilon$ for any two points *x* and *y* in that subinterval. By choosing the values of the endpoints to be rational numbers very close to the original value of *f* on the endpoints, we can construct a $g \in D$ such that $\rho(f,g) < \epsilon$. Recall that *C* is also complete. Therefore, any probability on the Borel σ -algebra of *C* is tight.

Write C as the Borel σ -algebra of C . Define the projection of functions on $t_1, ..., t_k \in [0, 1]$ as

$$
\pi_{t_1,\ldots,t_k}(f) = (f(t_1),\ldots,f(t_k)).
$$

 $\pi : C \to \mathbb{R}^k$ is a continuous function, and thus also measurable. In *C*, we say that a set *A* is finite-dimensional if there exists $t_1, ..., t_k$ and $H \subset \mathbb{R}^k$ such that $A = \pi_{t_1,...,t_k}^{-1}(H)$. Namely,

$$
A = \{ f \in C : (f(t_1), f(t_2), ..., f(t_k)) \in H \}.
$$

Now for any set $\pi_{t_1,\dots,t_k}^{-1}(H)$ and $s_1,\dots,s_l \in [0,1]$, the set can be written as $\pi_{t_1,\dots,t_k,s_1,\dots,s_l}^{-1}(H')$ for some $H' \subset \mathbb{R}^{k+l}$. Hence, for any

$$
\pi_{t_1,\ldots,t_k}^{-1}(H_1) \cap \pi_{s_1,\ldots,s_l}^{-1}(H_2) = \pi_{t_1,\ldots,t_k,s_1,\ldots,s_l}^{-1}(H_1') \cap \pi_{t_1,\ldots,t_k,s_1,\ldots,s_l}^{-1}(H_2')
$$

=
$$
\pi_{t_1,\ldots,t_k,s_1,\ldots,s_l}^{-1}(H_1' \cap H_2').
$$

This proves that the collection of finite-dimensional sets is a π -system. Call such collection C_F . Now each closed ball in C can be written as a countable intersection of sets in *C^F*

$$
\overline{B}(f,\epsilon) = \bigcap_{r \in \mathbb{Q}} \{ g : |g(r) - f(r)| \le \epsilon \}.
$$

Hence, $\sigma(C_F)$ contains all closed balls, and thus all open balls. Since C is separable and thus Lindelöff, $\sigma(C_F)$ contains all open sets. Since C_F is a π -system and $\sigma(C_F) = \mathcal{C}, C_F$ is a separating class.

3 Weak Convergence of Probability Measures

Definition 2 (Weak Convergence): We say that a sequence of probability measure ${P_n}$ defined on (S, S) converges weakly to a probability measure P, denoted as $P_n \Rightarrow P$, if for any bounded and continuous real function f we have

$$
\int_{S} f dP_n \longrightarrow \int_{S} f dP.
$$

Definition 3: Let *Xn*'s and *X* be random variables with realized values on (S, S') . Let $\mu_n(\mu)$ be the measure on *S'* induced by $X_n(X)$. We say that X_n converge to *X* weakly if μ_n converge to μ weakly.

We start from some simple examples to illustrate the ideas behind the definition.

Example 3.1: On an arbitrary metric space *S*, let $\delta_x(A) = \mathbf{1}_A(x)$ be the probability measure that assigns unit mass on the point *x*. If $x_n \to x$ and *f* is continuous, then $f(x_n) \to f(x)$, and thus $\delta_{x_n} \Rightarrow \delta_x$. On the other hand if $x_n \not\to x$, there exists $\epsilon > 0$ such that $d(x_n, x) > \epsilon$ for infinitely many *n*'s. Simply choose the bounded and continuous function $f(y) = (1 - d(y, x)/\epsilon)^+$. Then $f(x) = 1$ but $f(x_n) = 0$ for infinitely many *n*'s. This shows that $\delta_{x_n} \neq \delta_x$. Therefore, $\delta_{x_n} \Rightarrow \delta_x$ if and only if $x_n \to x$.

Example 3.2: Let $S = [0, 1]$ with the usual metric. Consider a sequence $\{A_n\}$ of sets $A_n = \{x_{kn}\}_{k=1}^{r_n}$ for each *n*. Suppose $\{A_n\}$ is asymptotically uniform in the sense that for any subinterval $J \subset [0,1]$,

$$
\frac{1}{r_n} \# \{k : x_{nk} \in J\} \longrightarrow |J|.
$$

Define P_n to be uniform on A_n and P be the Lebesgue measure on [0,1]. Then $P_n \Rightarrow P$. Let *f* be continuous and bounded defined on [0, 1]. *f* is Lebesgue integrable and also Reimann integrable. For any $\epsilon > 0$, there exists fine enough partition ${J_1, ..., J_m}$ such that the upper Riemann sum and the lower Riemann sum are within ϵ of the integral.

$$
\sum_{i=1}^m \underline{v}_i |J_i| + \epsilon \ge \int_0^1 f \, d\, \mathbf{P}, \quad \sum_{i=1}^m \overline{v}_i |J_i| - \epsilon \le \int_0^1 d\, \mathbf{P} \, .
$$

Asymptotic on *n*,

$$
\int_0^1 f dP_n = \sum_{k=1}^{r_n} \frac{1}{r_n} f(x_{nk})
$$

\n
$$
\leq \sum_{i=1}^m \frac{1}{r_n} \# \{k : x_{nk} \in J_i\} \overline{v}_i
$$

\n
$$
\longrightarrow \sum_{i=1}^m |J_i| \overline{v}_i \leq \int_0^1 f dP + \epsilon.
$$

Page 6 of [18](#page-17-0)

Similarly, one can prove $\int_0^1 f dP_n$ is asymptotically larger or equal to $\int_0^1 f dP$. This proves that $\int_0^1 f dP_n \to \int_0^1 f dP$. Hence, $P_n \Rightarrow P$.

Definition 4 (P-continuity Set): We call a set $A \subset S$ a P-continuity set, if $P(\partial A) = 0$, where ∂A denotes the boundary of *A*. ($\partial A = \overline{A} - \text{int}(A)$).

The following theorem provides useful conditions equivalent to weak convergence.

Theorem 4 (Portmanteau Theorem): Suppose ${P_n}$ and P are probability measures defined on (S, \mathcal{S}) . These conditions are all equivalent to $P_n \Rightarrow P$:

- (i) For any continuous and bounded real f , $\int_S f dP_n \to \int_S f dP$.
- (ii) For any uniformly continuous and bounded real f , $\int_S f dP_n \to \int_S f dP$.
- (iii) $\limsup_{n\to\infty} P_n(F) \leq P(F)$ for all closed *F*.
- (iv) $\liminf_{n\to\infty} P_n(G) \geq P(G)$ for all open *G*.
- (v) $P_n(A) \to P(A)$ for all P-continuity sets A.

Recall that in [Example 3.1](#page-5-0), we see that $\delta_{x_n} \Rightarrow \delta_x \iff x_n \to x$. If we choose $A = \{x\}$, then apparently $\delta_{x_n}(A) = 0 \nleftrightarrow 1 = \delta_x(A)$. This does not contradict with [Theorem 4](#page-6-0) because $\{x\}$ is not a P-continuity set.

Proof.

- (i) \implies (ii): Trivial
- (ii) \implies (iii): Let *F* be a closed set in *S*. Set for all $\epsilon > 0$, $f_{\epsilon}(x) =$ $(1 - d(x, F)/\epsilon)^+$ and $F_{\epsilon} = \{x : d(x, F) < \epsilon\}$. Since *F* is closed, $F_{\epsilon} \downarrow F$ as $\epsilon \to 0$. Also, $\int f_{\epsilon} dP_n \ge P_n(F)$ for all *n*. Fix $\delta > 0$. There exists a small enough ϵ such that $P(F_{\epsilon}) \leq P(F) + \delta$. Note that

$$
P_n(F) \le \int f_{\epsilon} dP_n \to \int f_{\epsilon} dP \le P(F_{\epsilon}) \le P(F) + \delta
$$

\n
$$
\implies \limsup_{n \to \infty} P_n(F) \le P(F) + \delta.
$$

• (iii) =*⇒* (iv): It follows easily from complement arguments.

• (iii), (iv) \implies (v): Since *A* is a *P*-continuity set, $P(\overline{A}) = P(A) = P(intA)$. We then have

$$
\limsup_{n \to \infty} \mathcal{P}_n(\overline{A}) \le \mathcal{P}(\overline{A}) = \mathcal{P}(A)
$$

$$
\liminf_{n \to \infty} \mathcal{P}_n(\text{int}A) \ge \mathcal{P}(\text{int}A) = \mathcal{P}(A).
$$

This then implies

$$
\limsup_{n \to \infty} \mathcal{P}_n(A) = \liminf_{n \to \infty} \mathcal{P}_n(A) = \mathcal{P}(A).
$$

• (v) =*⇒* (i): By linearity of integrals, we can assume *f* is bounded between 0 and 1. Observe that

$$
\int_{S} f dP = \int_{0}^{1} P(f > t) dt, \quad \int_{S} f dP_{n} = \int_{0}^{1} P_{n}(f > t) dt.
$$

Since *f* is continuous, $\partial \{s : f(s) > t\}$ ⊂ $\{s : f(s) = t\}$. But $P(s : f(s) = t)$ can be strictly positive only for countably many *t*'s. By (v), $P_n(f > t) \rightarrow P(f > t)$ for almost every *t*. Hence, by BCT,

$$
\int_0^1 \mathcal{P}_n(f > t) dt \to \int_0^1 \mathcal{P}(f > t) dt.
$$

 \Box

It will be nice if we only need to check whether P_n converges to P on a certain class of sets in *S* to unsure that $P_n \Rightarrow P$.

Theorem 5: Suppose (i) that A_P is a π -system and (ii) that each open set is a countable union of \mathcal{A}_P sets. If $P_n(A) \to P(A)$ for every *A* in \mathcal{A}_P , then $P_n \Rightarrow P$.

Theorem 6: Suppose (i) that \mathcal{A}_P is a π -system and (ii) that *S* is separable, and for every $x \in S$ and $\epsilon > 0$, there exists $A \in \mathcal{A}_P$ such that

$$
x \in \text{int}(A) \subset A \subset B(x, \epsilon).
$$

If $P_n(A) \to P(A)$ for all $A \in \mathcal{A}_P$, then $P_n \Rightarrow P$.

Definition 5 (Convergence-Determining Class): We call a subclass *A* of *S* a *convergence-determining class* if, *for any* ${P_n}$ and ${P, P_n(A) \to P(A)}$ for all *P*-continuity *A* in *A* implies $P_n \Rightarrow P$.

To ensure that a collection of *A* is convergence-determining, we must make sure that the class of P-continiuty sets *A^P* in *A* satisfies the conditions of [Theorem 6](#page-7-0) **for any** P. Fix any $x \in S$ and $\epsilon > 0$. Let $\mathcal{A}_{x,\epsilon}$ denote the collection of sets in \mathcal{A} such that

$$
x \in \text{int}(A) \subset A \subset B(x, \epsilon),
$$

and let $\partial \mathcal{A}_{x,\epsilon}$ denote the collection of their boundaries.

Theorem 7: Suppose that (i) that *A* is a *π*-system and (ii) that *S* is separable and for each $x \in S$ and ϵ , $\partial \mathcal{A}_{x,\epsilon}$ either contains \varnothing or contains uncountably many disjoint sets. Then A is a convergence-determining class.

Proof. Let ${P_n}$ and P be given arbitrary. Let A_P denote the collection of Pcontinuity sets in *A*. Apparently, A_P is a π -system. Now fix $x \in S$ and $\epsilon > 0$. Since $∂A_{x,\epsilon}$ must contain a set *E* with $P(E) = 0$, this means that there is a P-continuty set in $A_{x,\epsilon}$. Hence, A_P satisfies the conditions in [Theorem 6](#page-7-0). This shows that A is a convergence-determining class. \Box

Example 3.3: The collection of *A* finite intersections of open balls form a convergencedetermining class. Because

$$
\partial B(x,r) \subset \{y : d(x,y) = r\},\
$$

and thus either \varnothing is in $\partial \mathcal{A}_{x,\epsilon}$ or there are uncountably many disjoint sets in $\partial \mathcal{A}_{x,\epsilon}$.

Example 3.4: Consider the collection of rectangles in \mathbb{R}^k , sets of the form $\{x : b <$ $x \leq a$. The collection satisfies [Theorem 7,](#page-8-0) and hence is a convergence-determining class.

Example 3.5: In \mathbb{R}^n , the class $\mathcal A$ of sets

$$
Q_x = \{y : y \le x\}
$$

is also a convergence-determining class. Suppose $P_n(Q_x) \to P(Q_x)$ for each Q_x with $P(\partial Q_x) = 0$. For each $1 \leq i \leq k$, define $E_i = \{t : P\{x : x_i = t\} > 0\}$. E_i is at most countable. Hence, there are uncountably many rectangles (in the form (a, b)) such that each vertex $x = (x_1, ..., x_k)$ satisfy $x_i \notin E_i$. Let \mathcal{A}_P be the collection of such rectangles. Such collection satisfies the condition in [Theorem 6.](#page-7-0) For any $A \in \mathcal{A}_P$, for each vertex *x* of *A*, $P(\partial Q_x) = 0$. *A* can be written as inclusion and exclusions of the Q_x 's. It then follows that $P_n(A) \to P(A)$ by the inclusion-exclusion formula. And thus $P_n \Rightarrow P$.

There is another way to state that *A* is a convergence-determining class. For any probability measure P, define $F(x) = P\{y : y \leq x\}$. Then $P_n \Rightarrow P$ if and only if $F_n(x) \to F(x)$ for all *x* at which *F* is continuous.

Hence, for \mathbb{R}^n -valued random variables X_n , saying that X_n converges weakly to *X* is equivalent to saying that X_n converges to *X* in distribution.

Suppose that $h : (S, S) \to (S', S')$ is a measurable function that maps *S* into *S'*. For any probability measure P on (S, S) , *h* then induces a measure on S' , $P h^{-1}$, defined by

$$
P h^{-1}(A) = P(h^{-1}(A)).
$$

Theorem 8 (Continuous Mapping Theorem): Let $h : (S, \mathcal{S}) \to (S', \mathcal{S}')$ be a continuous function, and suppose $P_n \Rightarrow P$ on (S, S) . Then $P_n h^{-1} \Rightarrow h^{-1}$ on (S, \mathcal{S}) .

Proof. Let f be a continuous function from (S', S') into $(\mathbb{R}, \mathcal{R})$. Since f and h are continuous, $f \circ h : (S, S) \to (\mathbb{R}, \mathcal{R})$ is also continuous. Hence, by change of variable,

$$
\int_{S'} f dP_n h^{-1} = \int_S f \circ h dP_n \longrightarrow \int_S f \circ h dP = \int_{S'} f dP h^{-1}.
$$

Corollary: Let X_n 's and X be \mathbb{R}^n -valued, and suppose X_n converges to X in distribution. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuous. Then $f(X_n)$ converges to $f(X)$ in distribution.

4 Prohorov's Theorem

In the previous section, we discussed how to check if a sequence of probability measure $\{\mu_n\}$ converges weakly to a probability measure μ by introducing the concept of convergence-determining class ([Definition 5](#page-8-1)). But how do we know if $\{\mu_n\}$ converges weakly in the first place? We first introduce the notion of relative compactness.

Definition 6 (Relatively Compact): Let P be a family of probability measures defined on (S, \mathcal{S}) . Then we say that $\mathcal P$ is *relatively compact* if for any sequence in P , there exists a subsequence that converges weakly to some **probability measure**.

Let us recall a result from probability theory:

Theorem 9 (Helly's Selection Theorem): Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of sub-probability measures on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Then there exists a subsequence $\{\mu_{n_k}\}_{k=1}^{\infty}$ and a sub-probability measure μ such that

$$
\mu_n(a,b] \longrightarrow \mu(a,b]
$$

for all $a, b \in [-\infty, \infty]$ such that $\mu(\partial(a, b]) = 0$. We say that μ_{n_k} converges *vaguely* to *µ*.

Remark: If a sequence of sub-probability measure $\{\mu_n\}$ converges vaguely to a μ , then such μ is unique. Say μ_n converges vaguely to ν_1 and ν_2 . Then ν_1 and μ_2 agrees on the π -system:

$$
\{(a,b]: \nu_1(\partial(a,b]) = 0 = \nu_2(\partial(a,b]) = 0\},\
$$

which generates $\mathcal{B}(\mathbb{R})$.

Proof. Let F_n denote the cumulative distribution function corresponding to μ_n . Enumerate the set of all rational numbers $\{q_i\}_{i=1}^{\infty}$. By Bolzano Weierstrass Theorem, there exists a subsequence of $\{F_n\}$, $\{F_{1k}\}$ such that $\{F_{1k}(q_1)\}$ converges to some point $a_1 \in [0, 1]$. Further from this subsequence, there exists a subsequence $\{F_{2k}\}$ such that ${F_{2k}(q_2)}$ converges to some $a_2 \in [0,1]$. Iteratively, we have for all q_j , sequences ${F_{jk}}$ such that ${F_{jk}(q_j)}$ converges to some point a_j , and that ${F_{jk}}$ is

a subsequence of ${F_{(j-1)k}}$. Now consider the sequence ${G_k}_{k=1}^{\infty} = {F_{kk}}_{k=1}^{\infty}$. Then $G_k(q_j) \to a_j$ for all $q_j \in \mathbb{Q}$. Now define for all $x \in \mathbb{R}$,

$$
G(x) = \inf\{a_j : j \text{ such that } q_j \ge x\}.
$$

Then $G(x)$ is nondecreasing and right continuous. Moreover, $G(q_j) = a_j$ for all $j \in \mathbb{N}$. Hence, $G_k(q) \to G(q)$ for all $q \in \mathbb{Q}$. Our proof is done if we can show that $G_k(x) \to G(x)$ for all *x* such that *G* is continuous. Let *x* be a point at which *G* is continuous. Let $\epsilon > 0$. Then there exists $q, q' \in \mathbb{Q}$ so close to *x* such that

$$
G(x) - \epsilon \le G(q) \le G(x) \le G(q') \le G(x) + \epsilon.
$$

For all *k*,

$$
G_k(q) \le G_k(x) \le G_k(q').
$$

Taking $k \to \infty$, we have $G_k(q) \to G(q)$ and $G_k(q') \to G(q')$, and thus

$$
G(x) - \epsilon \le \liminf G_k(x) \le \limsup G_k(x) \le G(x) + \epsilon.
$$

Since ϵ is arbitrary, we have

$$
\lim_{k \to \infty} G_k(x) = G(x).
$$

 \Box

Therefore, any sequence of probability measures $\{\mu_n\}$ are guaranteed to have a subsequence that converges to a sub-probability measure. However, it is not guaranteed that such measure is a probability measure.

Example 4.1: Consider the sequence of probability measure $\{\delta_n\}_{n=1}^{\infty}$ defined on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, where δ_n is the probability that assigns probability 1 to the point *n*. ${\delta_n}$ converges vaguely to μ that assigns probability 0 to any set. In this case, measure is *escaping* to infinity.

Example 4.2: Let $\{\mu_n\}_{n=1}^{\infty}$ be the sequence of probability measure that has uniform distribution on $[-n, n]$. Then μ_n converges vaguely to μ that assigns probability 0 to any set. In this case, measure simply *evaporates*.

Hence, we need conditions on $\{\mu_n\}_{n=1}^{\infty}$ that guarantees that measures do not

escape or evaporate. Moreover, for probability measures defined on (C, \mathcal{C}) , we don't even have [Theorem 9](#page-10-0) to ensure vague convergence.

Example 4.3: Consider $\{\delta_n\}_{n=1}^{\infty}$ defined by δ_n assigning probability 1 to the continuous function z_n that increases linearly on $[0, 1/n]$ and decreases linearly on $[1/n, 2/n]$, and stays at 0 to the right of $2/n$. Let δ_0 be the probability measure that assigns probability 1 to the constant 0 function. Note that for any $t_1, ..., t_k \in [0, 1]$,

$$
\delta_n(A) \longrightarrow \delta_0(A),
$$

where $A = \{f \in C : (t_1, ..., t_k) \in H\}$ for some $H \in \mathbb{R}^k$. However, since $d(z_n, 0) = 1$ for all *n*, $z_n \nrightarrow 0$, and hence $\delta_n \nrightarrow \delta_0$. This shows that the collection C_F of finite dimensional sets is a separating class, but **not** a convergence determining class.

However, if we do know that ${P_n}$ *is relatively compact, and* $P_n(A) \to P(A)$ *for all A* ∈ *C_F*, *then we are guaranteed that* P_n \Rightarrow *P*. For any subsequence of $\{P_n\}$, say ${P'_n}$, there exists ${P'_{nk}}$ that converges to some probability measure P'. But then P' and P must agree on the separating class C_F , and so $P = P'$.

Now suppose we know that a sequence of probability measures ${P_n}_{n=1}^{\infty}$ on (C, C) is relatively compact, and that for all $t_1, ..., t_k \in [0, 1]$, there exists some probability measure μ_{t_1,\dots,t_k} on $(\mathbb{R}^k, \mathcal{B}(\mathbb{R}^k))$ such that

$$
P_n \pi_{t_1,\ldots,t_k}^{-1} \Rightarrow \mu_{t_1,\ldots,t_k}.
$$

We can then conclude that there exists a probability measure P on (C, C) such that *its finite dimensional distribution*

$$
P \pi_{t_1,\dots,t_k}^{-1} = \mu_{t_1,\dots,t_k}.
$$

Definition 7 (Tightness): We say that a family P of probability measures defined on (S, \mathcal{S}) is *tight* if for every ϵ there exists a compact set $K \subset S$ such that

$$
P(K) > 1 - \epsilon
$$

for all $P \in \mathcal{P}$.

Theorem 10 (Prohorov's Theorem): Let *P* be a family of probability measures defined on a metric space (S, \mathcal{S}) . If \mathcal{P} is tight, then it is relatively compact. If (S, \mathcal{S}) is separable and complete, the converse also holds.

Proof. Suppose (S, \mathcal{S}) is separable and complete and that $\mathcal P$ is relatively compact.

Statement 1: For any open sets $\{G_n\}$ such that $G_n \uparrow S$ and $\epsilon > 0$, there exists *N* such that for all $n \geq N$, $P(G_n) \geq 1 - \epsilon$ for all $P \in \mathcal{P}$.

proof of claim. Suppose this is not true. Then for each *n*, we have some $P_n \in \mathcal{P}$ such that $P_n(G_n) \leq 1 - \epsilon$. Since P is relatively compact, there exists a subsequence ${P_{n_i}}$ of ${P_n}$ that weakly converges to some probability measure Q. Fixing any *n*, for all $n_i > n$,

$$
P_{n_i}(G_n) \le P_{n_i}(G_{n_i}) \le 1 - \epsilon.
$$

By [Theorem 4,](#page-6-0)

$$
Q(G_n) \le \liminf_i P_{n_i}(G_n) \le 1 - \epsilon.
$$

 \Box

And since $G_n \uparrow S$, we reach $Q(S) \leq 1 - \epsilon$. A contradiction.

Fix $\epsilon > 0$. Now for each *k* let $\{A_{ki}\}_{i=1}^{\infty}$ be a sequence of open balls with radius 1*/k* that covers *S*. Such sequence can be found since *S* is separable. By the claim above, for each *k*, there exists n_k such that $P(\bigcup_{i \leq n_k} A_{ki}) > 1 - \epsilon/2^k$ for all $P \in \mathcal{P}$. The set

$$
A = \bigcap_{k \ge 1} \bigcup_{i \le n_k} A_{k_i}
$$

is a totally bounded set. Since *S* is complete, the closure *K* of *A* is compact. Moreover, $P(K) \geq 1 - \epsilon$ for all $P \in \mathcal{P}$.

Now we prove the opposite direction. Suppose P is tight on a metric space (S, S) . Let ${P_n}$ be a sequence of P . We want to find a subsequence ${P_n}$ and construct a probability measure Q such that $P_{n_i} \Rightarrow Q$.

Finding the subsequence: Choose compact sets *K^u* in such a way that $P(K_u) \geq 1 - 1/u$ for all $P \in \mathcal{P}$. The set $\bigcup_u K_u$ is separable. And hence there exists a countable collection A of open sets that satisfies the following property:

For any open *G* and $x \in \bigcup_u K_u$, there exists $A \in \mathcal{A}$ such that $x \in A \subset \overline{A} \subset G$. Define H to be the set that consists of

 \emptyset and finite unions of the form $\overline{A} \cap K_u$ where $A \in \mathcal{A}$.

Note that H is countable. Therefore, using the diagonal method, we can find a subsequence ${P_{n_i}}$ such that ${P_{n_i}(H)}$ converges for all $H \in \mathcal{H}$. Define

$$
\alpha(H) \coloneqq \lim_i \mathbf{P}_{n_i}(H).
$$

Our goal is to construct a probability measure P such that

$$
\mathcal{P}(G) = \sup_{H \subset G} \alpha(H)
$$

for any open set *G*. If we succeed in doing so, then for any open set *G*, observe that

$$
\liminf_{i} \mathcal{P}_{n_i}(G) \ge \alpha(H)
$$

for all $H \subset G$, and so

$$
\liminf_{i} P_{n_i}(G) \ge \sup_{H \subset G} \alpha(H) = P(G).
$$

By [Theorem 4,](#page-6-0) we can then conclude that $P_{n_i} \Rightarrow P$.

Construction of P: Note that H is closed under finite unions. Also, $\alpha(H)$ satisfies:

- $\alpha(H_1) \leq \alpha(H_2)$ if $H_1 \subset H_2$.
- $\alpha(H_1 \cup H_2) = \alpha(H_1) + \alpha(H_2)$ for all H_1, H_2 .
- $\alpha(H_1 \cup H_2) \leq \alpha(H_1) + \alpha(H_2).$
- $\alpha(\emptyset) = 0.$

For any open sets *G*, define

$$
\beta(G) = \sup_{H \subset G} \alpha(H).
$$

Finally, for any $M \in \mathcal{S}$, define

$$
\gamma(M) = \inf_{M \subset G} \beta(G).
$$

We want to prove two things. First, γ is an outer measure. Suppose we succeed in

doing so. Recall that the set

$$
\mathcal{M} = \{ M \subset S : \gamma(A) = \gamma(M \cap A) + \gamma(M^c \cap A) \text{ for all } A \subset S \}
$$

is a σ -field, and that γ is a measure when restricted on *M*. The second thing we want to prove is that all closed sets are in M . If that holds, we can then conclude that $S \subset M$. This means that the restriction of γ to S is a measure. Let us call it P. $P(G) = \gamma(G) = \beta(G)$ for all open *G*. And so

$$
P(S) = \beta(S) = \sup_{H \subset S} \alpha(H) \ge \sup_u \alpha(K_u) \ge \sup_u (1 - u^{-1}) = 1.
$$

(Note that K_u 's are in H .) Therefore, P is indeed a probability measure.

Statement 2: If $F \subset G$ where F is closed and G is open, and if $F \subset H$ for some $H \in \mathcal{H}$, then

$$
F\subset H_0\subset G
$$

for some $H_0 \in \mathcal{H}$.

Proof. Since *F* is closed and is contained in some K_u , it is compact. For each $x \in F$, there exists $A_x \subset \mathcal{A}$ such that

$$
x\in A_x\subset \overline{A}_x\subset G.
$$

There exists finitely many A_x 's, say $\{A_i\}_{i=1}^n$ that covers *F*. Then we have

$$
F \subset \bigcup_{i=1}^n (\overline{A}_i \cap K_u) \subset G.
$$

 \Box

Statement 3: γ is an outer measure on *S*.

Proof. We first prove that β is finitely subbadditive on the open sets. Let $H \subset$ $G_1 \cup G_2$ where $H \in \mathcal{H}$ and G_1, G_2 are open. Define

$$
F_1 := \{ x \in H : \rho(x, G_1^c) \ge \rho(x, G_2^c) \}
$$

$$
F_2 := \{ x \in H : \rho(x, G_2^c) \ge \rho(x, G_1^c) \}.
$$

Then $F_1 \subset G_1$ and $F_2 \subset G_2$. If not, say $x \in F_1$ but not in G_1 , then $x \in G_2$. Since G_2^c is closed, $\rho(x, G_1^c) = 0 < \rho(x, G_2^c)$, a contradiction. By [Statement 2,](#page-15-0) $F_1 \subset H_1 \subset G_1$ and $F_2 \subset H_2 \subset G_2$ for some $H_1 \in \mathcal{H}$ and $H_2 \in \mathcal{H}$. But we know that

$$
\alpha(H) \le \alpha(H_1 \cup H_2) \le \alpha(H_1) + \alpha(H_2) \le \beta(G_1) + \beta(G_2).
$$

And so

$$
\beta(G_1 \cup G_2) = \sup_{H \subset G_1 \cup G_2} \alpha(H) \leq \beta(G_1) + \beta(G_2).
$$

Next, we prove that β is countably subadditive on the open sets. Let $H \subset$ $\bigcup_{i=1}^{\infty} G_i$ where $H \in \mathcal{H}$ and G_i 's are open. Since H is compact, there exists n such that $H \subset \bigcup_{i=1}^n G_i$. But by finite subadditivity,

$$
\beta(H) \leq \sum_{i=1}^n \beta(G_i) \leq \sum_{i=1}^\infty \beta(G_i).
$$

Finally, we can prove that γ is an outer measure. Clearly it is monotone. We now prove that it is countably subadditive. Let $\{M_i\}_{i=1}^{\infty}$ be subsets of *S*. By definition of γ , for each *i*, there exists open $G_i \supset M_i$ such that

$$
\gamma(M_i) > \beta(G_i) + \epsilon/2^i.
$$

Then we have

$$
\gamma\left(\bigcup_{i=1}^{\infty} M_i\right) \leq \beta\left(\bigcup_{i=1}^{\infty} G_i\right) \leq \sum_{i=1}^{\infty} \beta(G_i) < \sum_{i=1}^{\infty} \gamma(M_i) + \frac{\epsilon}{2}.
$$

Since this holds for all ϵ , we conclude that

$$
\gamma\left(\bigcup_{i=1}^{\infty}M_i\right) \leq \sum_{i=1}^{\infty}\gamma(M_i).
$$

 \Box

Statement 4: The set of all closed sets is contained in the collection *M* of *γ*measurable sets.

Proof. We first prove that $\beta(G) \geq \gamma(F \cap G) + \gamma(F^c \cap G)$ when *F* is closed and *G* is open. Fix $\epsilon > 0$. Observe that $F^c \cap G$ is open. Hence, there exists $H_1 \subset F^c \cap G$ such that

$$
\alpha(H_1) \ge \beta(F^c \cap G) - \epsilon = \gamma(F^c \cap G) - \epsilon.
$$

Since H_1 is compact, $H_1^c \cap G$ is open. Hence, there exists $H_0 \subset H_1^c \cap G$ such that

$$
\alpha(H_0) \ge \beta(H_1^c \cap G) - \epsilon \ge \gamma(F \cap G) - \epsilon.
$$

Since H_1 and H_0 are disjoint, and both are in G ,

$$
\beta(G) \ge \alpha(H_1 \cup H_0) = \alpha(H_1) + \alpha(H_0) \ge \gamma(F^c \cap G) + \gamma(F \cap G) - 2\epsilon.
$$

Since ϵ is arbitrary,

$$
\beta(G) \ge \gamma(F \cap G) + \gamma(F^c \cap G).
$$

Finally, we prove that $\gamma(M) \geq \gamma(F \cap M) + \gamma(F^c \cap M)$ for all closed *F*. Fix $\epsilon > 0$. There exists an open set *G* such that $G \supset M$, and $\gamma(M) \geq \gamma(G) - \epsilon$.

$$
\gamma(M) \ge \beta(G) - \epsilon \ge \gamma(F \cap G) + \gamma(F^c \cap G) - \epsilon
$$

$$
\ge \gamma(F \cap M) + \gamma(F^c \cap M) - \epsilon.
$$

Since ϵ is arbitrary, we have that

$$
\gamma(M) \ge \gamma(F \cap M) + \gamma(F^c \cap M).
$$

 $\gamma(M) \leq \gamma(F \cap M) + \gamma(F^c \cap M)$ follows directly from [Statement 3.](#page-15-1) \Box

References

Billingsley, P. (1999). *Convergence of probability measures*. Wiley.

Athreya, K. B., & Lahiri, S. N. (2006). *Measure theory and probability theory*. Springer.