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1 Notation

91(x)
92()
Let f : R” — R. We define Df(x) := Vf(2)T. Let g : R* — RF where g(z) = ) . We define
gn ()
Vgl(:r)T
Vgg(x)T
Dyg(z) = :
Vgn(x)T

2 Equality Constraints - Lagrange’s Method

The Lagrange’s method provides a way of selecting points that are possibly local optimal points when there
are only equality constraints. Namely, it provides a necessary condition for a point to be a local optimal
point.

2.1 First Order Condition

Theorem 2.1 (Lagrange): Let f : R® — R and g; : R® — R for i = 1,.....,k be C! functions.
Suppose z* is a local maximal or minimal point of f on the set

D={z:g;(x)=0forall 1 <i<Ek}.

Write g = (g1, ..., gx)T : R® — R*. Suppose also that rank(Dg(z*)) = k. Then there exists A}, ..., \j €
R such that

k
Df(a*) + 3 A Dgi(a*) = 0.
=1

Two points should be emphasized.

e Lagrange’s Theorem provides a necessary condition for local optimal points, not a sufficient condition.
A point satisfying the condition may not be a local optimal point.

*This TA note is based on Prof. John Kennan’s math camp lecture taught in 2025 at UW-Madison. All errors are mine.



o If at an optimal point 2*, Dg(z*) does not have rank k, then the conclusion in Theorem 2.1 does not
necessarily hold: there may not exist A1, A, ..., A,, such that

k
Df(z*)+> A Dgi(z*) = 0.
i=1

2.2 Intuition

Let us consider the case when there is only one constraint: g(x1,...,2,) = I — p121 — ... — Py, and we set
the constraint g(x) = 0, x € R™. Charlie faces the problem:

max U(x) s.t. g(z) =0.

(Suppose he is forced to spend up all of his money). At the optimal point z* = (7, ..., z}),

MU, MU, MU,

p1 b2 . Pn
Why? Assume the contrary that at the optimal point x*,

MU, - MU,
P1 P2

Suppose Charlie sells a small amount € of good 2. By doing so, he obtains € - po units of money. This sale
reduces his utility by approximately MUs - €. He can then use the money to purchase
€ P2
b1

units of good 1. The additional amount of good 1 yields an increase in utility of

MU, - EP2

b1

Comparing the two changes in utility, Charlie becomes strictly better off since

MUl‘ZE'E > MU, -e.

b1

This contradicts the fact that z* is the optimal point. Therefore, Equation 1 must hold. Note that
DU(z) = [MUy(z) MUy(z) - MU,(x)]
Dg(z)=[-p1 —p2 -+ —pn]

If we choose \* = MU, /p;, then
DU(z*) + A*Dg(x™) = 0.

This verifies the conclusion of Theorem 2.1.
Suppose Charlie’s income increases by e¢. He can use the additional money to buy €/p; units of good i.
This gives him an additional utility of
MU,
P

Note that the additional utility he gains is the same regardless of which good he purchases. A* is Charlie’s
marginal utility as his income increases, and is called the shadow price of the constraint g(x).

€= \e.



2.3 A Cookbook Procedure
Let an equality constraint problem be written in the following form: f:R” - R, g; : R - R for 1 <i < k.

max f(x) over D ={z € R" : g;(x) =0 for all 1 <4 < k}.
To solve the problem, we follow the procedure:

1. Set up the Lagrangian:

L(x; \) = f(z) + Z Aigi(x)

2. Solve (z, A) that satisfies the following system of equations:

L
%(37;/\) =0foralli=1,...,n
L
aa/\(l‘/\)—Oforall]_l k.

The solutions are called the critical points of the Lagrangian.

3. If we are maximizing f, then choose from the critical points that maximizes f. If we are minimizing
f, then choose the one that minimizes f.

3 Inequality Constraints - Kuhn and Tucker’s Method

Now we turn to a more general case: when some constraints are inequalities. Kuhn and Tucker provided a
method to solve the problem:

maximize f over D = {z € R" : g;j(z) =0 for all 1 < j <my, hi(z) > ¢; for all 1 <i <mg},

where f: R™ — R, each g; : R" — R and h; : R" — R.
3.1 First Order Condition

Theorem 3.1 (Kuhn and Tucker): Let f : R” — R, g; : R" — R and h; : R” — R be C" functions,
c¢; € R, where 1 < j <mj and 1 <i < msy. Suppose z* is a local maximal point of f on

D={zeR":gj(x)=0forall 1 <j<mq, hi(z) >c¢ forall 1 <i<mg}.

Let E C {1, ...,1} be the set of inequality constraints that are binding and write hg = (h;);cg. Suppose
D(g, hg) has rank m; 4 |E|. Then there exists (\},..., A%, ) and (u7, ..., 3, ) such that the following

conditions are met:

w; >0 and ,uf(h~( *)—ci)zoforizl .M (KT-1)

)+ Z XiDg;(z*) + Z (i Dhi(z*) = 0. (KT 2)

When it is a minimization problem, KT-1 is replaced by

w; <0and p;(hi(z*) —¢;)=0fori=1,...,mo

KT-1 is called the complementary slackness condition. It is called complementary because at least one
of the following must be true: the constraint is binding or the multiplier is 0.
Some points worth noticing:



1.

3.2

Similar to Lagrange’s Theorem, Kuhn and Tucker’s Theorem provides a necessary condition for local
optimal points, not a sufficient condition.

For local optimal points that does not satisfy rank{D(g, hg)(z*)} = m; + |E|, the conclusion of the
theorem may not hold.

It is recommended that one write all inequalities in terms of h;(x) > ¢; so that one doesn’t have to think
repeatedly about the sign of \; for each ¢ when solving the question. In that way, for maximization
problems, A; > 0 for all 4 and, for minimization problems, \; < 0 for all .

Intuition

Charlie is maximizing his utility w(z1, ..., 2,) with the following constraints:

g(x) =1 —p1x1 — ... — ppity =0,
hi(z)=xz; > ¢;, V1<i<n.

Let * = (z7,...,2}). There are two possible cases:

(i)

xy > ¢; for all 1 <4 < n: Then as we discussed in subsection 2.2, at z*, it must be

MU, MU, MU,

b1 D2 Pn

Choose A* to be the common ratio, and p; =0 for all 1 < ¢ <n. Then we would have
n
Df(z*) + XN*Dg(x™) + Z w; Dhi(x) = 0.
i=1

There is some x; = ¢;: Consider the case x7 > ¢; for all 1 < ¢ < n — 1 while 2 = ¢;. Then our
argument in subsection 2.2 no longer works: it may be the case that

MU1 7MUn—1>MUn

b1 Pn-1 Pn

Charlie would like to exchange x,, for other goods, but the requirement that he must keep at least ¢,
units of good n makes this infeasible. Write
MU MU, _
=Tt =l = N, — MU, > 0.
P1 Pn-1

Note that

Then we would have
Df(a") + N Dg(a”) + > ui Dhi(x) = 0.
i=1

This verifies the conclusion of Theorem 3.1.

Suppose Charlie were allowed to hold only ¢,, — € units of good n. He could then sell € units of good n
for € - p,, units of money. With this money, he could purchase (¢ - p,,)/p1 units of good 1, yielding an
additional utility of (e - p, - MU1)/p1 = A*ppe of utility. At the same time, selling € units of good n
reduces his utility by e - MU,,. His net gain of utility is

Apne — MU, € = pre.
Hence, u} is the marginal utility of loosening the constraint h,(z) > ¢,, and is called the shadow
price of the constraint h,,(z). (For a constraint h;(z) > ¢;, loosening it means to decrease c;.)

This also explained why p; < 0 in minimization problems: loosening the constraint allows the minimum
value to decrease.



3.3 A Cookbook Procedure

Let an inequality constraint problem be written in the following form: f : R” — R, g; : R®* — R and
hi : R™ — R be C! functions, ¢; € R, where 1 < j < mq and 1 < i < ms.

max f(z) over D={z € R" e R": gj(z) =0 for all 1 < j <my, hi(z) >¢; for all 1 <i <may}.
We follow the procedure to find the solution.

1. Set up the Lagrangian:

L o) = £(@) + Y Njg(e) + 3 pilha(a) - o).

2. Solve the following system of equations and inequalities:

oL
8T(x; Ap)=0forall j=1,..,m (the equality constraints)
J
OL . . . .
a—’u_(a:; Ap)>0foralli=1,...,ms (the inequality constraints)
OL .
i >0, MiBTL-(x; Aup)=0foralli=1,..,ms (KT-1)
oL
%(w;)\,u) =0foralli=1,...,n. (KT-2)
Points (z, A) that solve the system are called critical points.
3. Choose the critical point that maximizes f.
For minimization problems, change (KT-1) to
oL .
pi <0, uia—w(x;A,u) =0foralli=1,..,ms. (KT-1)

And of course, choose the critical point that minimizes f in the final step.
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