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1 Notation

Let f : Rn → R. We define Df(x) := ∇f(x)⊺. Let g : Rn → Rk, where g(x) =


g1(x)
g2(x)

...
gn(x)

 . We define

Dg(x) :=


∇g1(x)

⊺

∇g2(x)
⊺

...
∇gn(x)

⊺

.

2 Equality Constraints - Lagrange’s Method
The Lagrange’s method provides a way of selecting points that are possibly local optimal points when there
are only equality constraints. Namely, it provides a necessary condition for a point to be a local optimal
point.

2.1 First Order Condition

Theorem 2.1 (Lagrange): Let f : Rn → R and gi : Rn → R for i = 1, ...., k be C1 functions.
Suppose x∗ is a local maximal or minimal point of f on the set

D = {x : gi(x) = 0 for all 1 ≤ i ≤ k}.

Write g = (g1, ..., gk)
⊺ : Rn → Rk. Suppose also that rank(Dg(x∗)) = k. Then there exists λ∗

1, ..., λ
∗
k ∈

R such that

Df(x∗) +

k∑
i=1

λ∗
iDgi(x

∗) = 0.

Two points should be emphasized.

• Lagrange’s Theorem provides a necessary condition for local optimal points, not a sufficient condition.
A point satisfying the condition may not be a local optimal point.

∗This TA note is based on Prof. John Kennan’s math camp lecture taught in 2025 at UW-Madison. All errors are mine.
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• If at an optimal point x∗, Dg(x∗) does not have rank k, then the conclusion in Theorem 2.1 does not
necessarily hold: there may not exist λ1, λ2, ..., λn such that

Df(x∗) +

k∑
i=1

λ∗
iDgi(x

∗) = 0.

2.2 Intuition
Let us consider the case when there is only one constraint: g(x1, ..., xn) = I − p1x1 − ...− pnxn, and we set
the constraint g(x) = 0, x ∈ Rn. Charlie faces the problem:

maxU(x) s.t. g(x) = 0.

(Suppose he is forced to spend up all of his money). At the optimal point x∗ = (x∗
1, ..., x

∗
n),

MU1

p1
=

MU2

p2
= ... =

MUn

pn
(1)

Why? Assume the contrary that at the optimal point x∗,

MU1

p1
>

MU2

p2
.

Suppose Charlie sells a small amount ϵ of good 2. By doing so, he obtains ϵ · p2 units of money. This sale
reduces his utility by approximately MU2 · ϵ. He can then use the money to purchase

ϵ · p2
p1

units of good 1. The additional amount of good 1 yields an increase in utility of

MU1 ·
ϵ · p2
p1

.

Comparing the two changes in utility, Charlie becomes strictly better off since

MU1 ·
p2
p1

· ϵ > MU2 · ϵ.

This contradicts the fact that x∗ is the optimal point. Therefore, Equation 1 must hold. Note that

DU(x) =
[
MU1(x) MU2(x) · · · MUn(x)

]
Dg(x) =

[
−p1 −p2 · · · −pn

]
If we choose λ∗ = MUi/pi, then

DU(x∗) + λ∗Dg(x∗) = 0.

This verifies the conclusion of Theorem 2.1.
Suppose Charlie’s income increases by ϵ. He can use the additional money to buy ϵ/pi units of good i.

This gives him an additional utility of
MU1

p1
ϵ = λ∗ϵ.

Note that the additional utility he gains is the same regardless of which good he purchases. λ∗ is Charlie’s
marginal utility as his income increases, and is called the shadow price of the constraint g(x).
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2.3 A Cookbook Procedure
Let an equality constraint problem be written in the following form: f : Rn → R, gi : Rn → R for 1 ≤ i ≤ k.

max f(x) over D = {x ∈ Rn : gi(x) = 0 for all 1 ≤ i ≤ k}.

To solve the problem, we follow the procedure:

1. Set up the Lagrangian:

L(x;λ) = f(x) +

n∑
i=1

λigi(x)

2. Solve (x, λ) that satisfies the following system of equations:

∂L

∂xi
(x;λ) = 0 for all i = 1, ..., n;

∂L

∂λj
(x;λ) = 0 for all j = 1, ..., k.

The solutions are called the critical points of the Lagrangian.

3. If we are maximizing f , then choose from the critical points that maximizes f . If we are minimizing
f , then choose the one that minimizes f .

3 Inequality Constraints - Kuhn and Tucker’s Method
Now we turn to a more general case: when some constraints are inequalities. Kuhn and Tucker provided a
method to solve the problem:

maximize f over D = {x ∈ Rn : gj(x) = 0 for all 1 ≤ j ≤ m1, hi(x) ≥ ci for all 1 ≤ i ≤ m2},

where f : Rn → R, each gj : Rn → R and hi : Rn → R.

3.1 First Order Condition

Theorem 3.1 (Kuhn and Tucker): Let f : Rn → R, gj : Rn → R and hi : Rn → R be C1 functions,
ci ∈ R, where 1 ≤ j ≤ m1 and 1 ≤ i ≤ m2. Suppose x∗ is a local maximal point of f on

D = {x ∈ Rn : gj(x) = 0 for all 1 ≤ j ≤ m1, hi(x) ≥ ci for all 1 ≤ i ≤ m2}.

Let E ⊂ {1, ..., l} be the set of inequality constraints that are binding and write hE = (hi)i∈E . Suppose
D(g, hE) has rank m1 + |E|. Then there exists (λ∗

1, ..., λ
∗
m1

) and (µ∗
1, ..., µ

∗
m2

) such that the following
conditions are met:

µ∗
i ≥ 0 and µ∗

i (hi(x
∗)− ci) = 0 for i = 1, ...,m2 (KT-1)

Df(x∗) +

m1∑
j=1

λ∗
jDgj(x

∗) +

m2∑
i=1

µ∗
iDhi(x

∗) = 0. (KT 2)

When it is a minimization problem, KT-1 is replaced by

µ∗
i ≤ 0 and µ∗

i (hi(x
∗)− ci) = 0 for i = 1, ...,m2.

KT-1 is called the complementary slackness condition. It is called complementary because at least one
of the following must be true: the constraint is binding or the multiplier is 0.

Some points worth noticing:

3



1. Similar to Lagrange’s Theorem, Kuhn and Tucker’s Theorem provides a necessary condition for local
optimal points, not a sufficient condition.

2. For local optimal points that does not satisfy rank{D(g, hE)(x
∗)} = m1 + |E|, the conclusion of the

theorem may not hold.

3. It is recommended that one write all inequalities in terms of hi(x) ≥ ci so that one doesn’t have to think
repeatedly about the sign of λi for each i when solving the question. In that way, for maximization
problems, λi ≥ 0 for all i and, for minimization problems, λi ≤ 0 for all i.

3.2 Intuition
Charlie is maximizing his utility u(x1, ..., xn) with the following constraints:

g(x) = I − p1x1 − ...− pnxn = 0,

hi(x) = xi ≥ ci, ∀1 ≤ i ≤ n.

Let x∗ = (x∗
1, ..., x

∗
n). There are two possible cases:

(i) x∗
i > ci for all 1 ≤ i ≤ n: Then as we discussed in subsection 2.2, at x∗, it must be

MU1

p1
=

MU2

p2
= · · · = MUn

pn
.

Choose λ∗ to be the common ratio, and µ∗
i = 0 for all 1 ≤ i ≤ n. Then we would have

Df(x∗) + λ∗Dg(x∗) +

n∑
i=1

µ∗
iDhi(x) = 0.

(ii) There is some xi = ci: Consider the case x∗
i > ci for all 1 ≤ i ≤ n − 1 while x∗

n = ci. Then our
argument in subsection 2.2 no longer works: it may be the case that

MU1

p1
= · · · = MUn−1

pn−1
>

MUn

pn
.

Charlie would like to exchange xn for other goods, but the requirement that he must keep at least cn
units of good n makes this infeasible. Write

λ∗ =
MU1

p1
= ... =

MUn−1

pn−1
, µ∗

n = λ∗pn −MUn > 0.

Note that

Dhn(x
∗) =

[
0, · · · , 0, 1

]
.

Then we would have

Df(x∗) + λ∗Dg(x∗) +

n∑
i=1

µ∗
iDhi(x) = 0.

This verifies the conclusion of Theorem 3.1.
Suppose Charlie were allowed to hold only cn − ϵ units of good n. He could then sell ϵ units of good n
for ϵ · pn units of money. With this money, he could purchase (ϵ · pn)/p1 units of good 1, yielding an
additional utility of (ϵ · pn · MU1)/p1 = λ∗pnϵ of utility. At the same time, selling ϵ units of good n
reduces his utility by ϵ ·MUn. His net gain of utility is

λ∗pnϵ−MUnϵ = µ∗
nϵ.

Hence, µ∗
n is the marginal utility of loosening the constraint hn(x) ≥ cn, and is called the shadow

price of the constraint hn(x). (For a constraint hi(x) ≥ ci, loosening it means to decrease ci.)
This also explained why µi ≤ 0 in minimization problems: loosening the constraint allows the minimum
value to decrease.
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3.3 A Cookbook Procedure
Let an inequality constraint problem be written in the following form: f : Rn → R, gj : Rn → R and
hi : Rn → R be C1 functions, ci ∈ R, where 1 ≤ j ≤ m1 and 1 ≤ i ≤ m2.

max f(x) over D = {x ∈ Rn ∈ Rn : gj(x) = 0 for all 1 ≤ j ≤ m1, hi(x) ≥ ci for all 1 ≤ i ≤ m2}.

We follow the procedure to find the solution.

1. Set up the Lagrangian:

L(x;λ, µ) = f(x) +

m1∑
j=1

λjgj(x) +

m2∑
i=1

µi(hi(x)− ci).

2. Solve the following system of equations and inequalities:

∂L

∂λj
(x;λ, µ) = 0 for all j = 1, ...,m1 (the equality constraints)

∂L

∂µi
(x;λ, µ) ≥ 0 for all i = 1, ...,m2 (the inequality constraints)

µi ≥ 0, µi
∂L

∂µi
(x;λ, µ) = 0 for all i = 1, ...,m2 (KT-1)

∂L

∂xi
(x;λ, µ) = 0 for all i = 1, ..., n. (KT-2)

Points (x, λ) that solve the system are called critical points.

3. Choose the critical point that maximizes f .

For minimization problems, change (KT-1) to

µi ≤ 0, µi
∂L

∂µi
(x;λ, µ) = 0 for all i = 1, ...,m2. (KT-1)

And of course, choose the critical point that minimizes f in the final step.
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