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1 Directional Derivatives and Differentiability on R”

Definition 1.1: Let f : R™ — R be a function, ¢ € R" a point, and v € R™ a direction vector with
unit length. We say that f is differentiable in the direction of w if

D) = iy L=

exists. D, f(c) is called the (one-sided) directional derivative of f at ¢ in the direction of w.

Among all directional derivatives, those in the coordinate directions e; = (0,---,1,---,0) have a special
notation:
of
D, = .
€4 f(C) axl (C)

Definition 1.2: A function f : R™ — R is differentiable at c if
(i) f is differentiable at ¢ in the direction of all unit vectors.

(ii) For any unit vector u = (uy, -+ ,u,) € R™,

D.f(c) = Zui of (c).
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Example 1.1: Let f : R — R. There are only two possible directions: 1 and —1. Recall the definition of
right and left derivatives:
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The directional derivatives have the following relationships with the right and left derivatives.
Dif(c) = f'(ct), D-1f(c)=—f"(c).
When f is differentiable at ¢, since —1 = (—1) x 1, by the definition above,
D_if(c) = =Dif(x) = —f'(c+).

Hence, f is differentiable at ¢ if and only if f/'(c—) = f'(c+).



Example 1.2: For multivariate functions, D_, f(c¢) = —D, f(c) for all unit vector v does not guarantee
that f is differentiable at c¢. Consider the following example:

z.y) = % (z,y) # (0,0),
few {o, (z,y) = (0,0).

For any unit vector u = (ug,us),

Duf(0,0) = Tim L{untu2) = (0.0)
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It is clear that D_, f(0,0) = —ufuy = —D, f(0,0). Note that
of _ of _
%(0,0) =0, By (0,0) =0.
: _ (1 1
However, if we take u = (W’ —2), then
1 1 9f 1 af
D, f(0,0) = —= # ——-—(0,0) + —=—=-(0,0).
100 = = # =L 0.0+ =200

Therefore, f is not differentiable at (0, 0).

Definition 1.3: Let f: R® — R, and f is differentiable at ¢. The R™**! matrix

T
Vi) = [8L(e)+ , 2L ()]
is called the gradient of f at c.

Therefore, for any direction u, D, f(c) = Vf(c) - u.

Theorem 1.1: Let f: R® — R. f is differentiable at ¢ with gradient V f(c) if and only if
Fle+v) = F(©) + VF(e) - v+ r(v)

where 7(v) = o(]|v||) as v — 0.

The hyperplane h(z) = f(c) + Vf(c) - (x — ¢) is a good approximation of f(x) near x = c.
2 First Order Condition

Definition 2.1 (Local maximal/minimal point): Let f : A — R and A is an open subset of R™.
We say that ¢ € A is a local maximal (minimal) point of f if there exists § > 0 such that

fle) =z ()f (=)

for all ||z — ¢|] < 4.



Theorem 2.1 (First Order Condition): Let f : A — R be differentiable where A is an open set
in R™. If ¢ is a local maximal or minimal point, then

Vf(c) = 0.

Proof. We will prove the case when c¢ is a local maximal point. Assume the contrary that V f(c) # 0. Then
there exists a unit vector u such that D, f(¢) = Vf(c) - u > 0. But since ¢ is a local maximal point, for any
x = ¢+ tu with small enough ¢ > 0,

flettu) = f(c)

< 0.

Therefore,

A contradiction. O

The first order condition is a necessary condition for a point to be a local maximal or minimal point.
A point ¢ with V f(¢) = 0 but is neither local maximal nor minimal is called a saddle point.

3 Second Order Condition

Definition 3.1 (Twice Differentiability): Let f : A — R be differentiable where A is an open set
in R™. We say that f is twice differentiable at c if %(x) is differentiable at ¢ for all coordinate x;.

The matrix

of of of of
Ox10x1 (C) Ox10x2 (C) 0x10Ty, (C) Vazl (C)T
of of of of
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is called the Hessian of f at ¢. The Hessian is symmetric when the cross derivatives are continuous at ¢
(Schwartz’s Theorem).

Theorem 3.1: Let f: A — R be differentiable on A C R". f is twice differentiable at ¢ with hessian
H(c) if and only if

fle+u)=fle)+Vflc)Tu+ %uTH(c)u + r(u)

with 7(u) = o(||ul|?) as u — 0.

Definition 3.2 (Positive-Definite, Negative-Definite and Indefinite Matrix): Let A € R"*"
be a symmetric matrix. If for all v € R"™,

vTAv > (<)0,



then we say that A is a positive-definite (negative-definite) matrix. If there exists u,v € R™ such that
uTAu >0, ovTAv <0,

then we say that A is an indefinite matrix.

Theorem 3.2 (Second Order Condition): Let f : A — R be twice continuously differentiable on
A with hessian H(c). Suppose V f(c) = 0.

1. If H(c) is negative-definite, then c is a local maximal point.
2. If H(c) is positive-definite, then c is a local minimal point.

3. If H(c) is indefinite, then c is a saddle point.

Proof. Suppose H(c) is a negative-definite matrix. By Theorem 3.1, we can write
1
fletv) = fle) + FuTH(c)v +1(v),

where r(v) = o(||v]|*). Since the function k(v) = vTH(c)v is continuous on the unit sphere (which is closed
and bounded),

m = Hm”ax vTH(c)v < 0
v||=1

exists. There exists § > 0 such that for all ||v]| < d,

m 2
r@) < [ ] el

Observe that for all v with |jv|| <6,
1
fle+w) = fle) + 5vTH(c)o + 7(v)
m 2 m 2
< = _ -
< fle) + 5 loll” = = vl

< f(c).

)

O

The second order condition is a sufficient condition for a point to be a local maximal/minimal or a
saddle point.

4 Sylvester’s Criterion

Definition 4.1 (Principal Minor): A principal minor of an n x n matrix A is the determinant of
some smaller square matrix formed by removing the same rows and columns of A.

Definition 4.2 (Leading Principal Minor): The k' leading principal minor of an n x n matrix A
is the determinant of the smaller square matrix formed by keeping the first k& rows and columns of A.

Example 4.1:
1 2 3 4
5 6 7 8
A= 9 10 11 12
13 14 15 16



A principal minor is obtained by deleting the same rows and columns. For example, if we delete the 2nd
and 4th rows and columns, we get the submatrix
1 3
9 11|’

whose determinant is 74. Thus, 74 is one of the principal minors of A. The 3"¢ leading principal minor of A
is the determinant of

2 3
6 7
0 11

O Ut =
—_
—_

Theorem 4.1 (Sylvester’s criterion): Let M be an n x n symmetric matrix. Write A as M’s k"
leading principal minor.

(i) M is positive-definite if and only if Ag > 0 for all 1 < k < n.

(ii) M is negative-definite if and only if (—1)*A;, > 0 for all 1 < k < n.

(iii) M is indefinite if and only if the first Ay that breaks both pattern above is nonzero.
)

(iv) Sylvester criterion is inconclusive if the first Ay that breaks both pattern is zero.
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