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1 Directional Derivatives and Differentiability on Rn

Definition 1.1: Let f : Rn → R be a function, c ∈ Rn a point, and u ∈ Rn a direction vector with
unit length. We say that f is differentiable in the direction of u if

Duf(c) = lim
h→0+

f(c+ hu)− f(x)

h

exists. Duf(c) is called the (one-sided) directional derivative of f at c in the direction of u.

Among all directional derivatives, those in the coordinate directions ei = (0, · · · , 1, · · · , 0) have a special
notation:

Deif(c) =
∂f

∂xi
(c).

Definition 1.2: A function f : Rn → R is differentiable at c if

(i) f is differentiable at c in the direction of all unit vectors.

(ii) For any unit vector u = (u1, · · · , un) ∈ Rn,

Duf(c) =

n∑
i=1

ui
∂f

∂xi
(c).

Example 1.1: Let f : R → R. There are only two possible directions: 1 and −1. Recall the definition of
right and left derivatives:

f ′(c+) = lim
h→0+

f(c+ h)− f(c)

h
, f ′(c−) = lim

h→0−

f(c+ h)− f(c)

h
.

The directional derivatives have the following relationships with the right and left derivatives.

D1f(c) = f ′(c+), D−1f(c) = −f ′(c−).

When f is differentiable at c, since −1 = (−1)× 1, by the definition above,

D−1f(c) = −D1f(x) = −f ′(c+).

Hence, f is differentiable at c if and only if f ′(c−) = f ′(c+).
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Example 1.2: For multivariate functions, D−uf(c) = −Duf(c) for all unit vector u does not guarantee
that f is differentiable at c. Consider the following example:

f(x, y) =

{
x2y

x2+y2 , (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

For any unit vector u = (u1, u2),

Duf(0, 0) = lim
t→0+

f(tu1, tu2)− f(0, 0)

t

=
(t3u2

1u2)/t
2 − 0

t
= u2

1u2.

It is clear that D−uf(0, 0) = −u2
1u2 = −Duf(0, 0). Note that

∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0.

However, if we take u =
(

1√
2
, 1√

2

)
, then

Duf(0, 0) =
1

2
√
2
̸= 1√

2

∂f

∂x
(0, 0) +

1√
2

∂f

∂y
(0, 0).

Therefore, f is not differentiable at (0, 0).

Definition 1.3: Let f : Rn → R, and f is differentiable at c. The Rn×1 matrix

∇f(c) =
[

∂f
∂x1

(c), · · · , ∂f
∂xn

(c)
]⊺

is called the gradient of f at c.

Therefore, for any direction u, Duf(c) = ∇f(c) · u.

Theorem 1.1: Let f : Rn → R. f is differentiable at c with gradient ∇f(c) if and only if

f(c+ v) = f(c) +∇f(c) · v + r(v)

where r(v) = o(∥v∥) as v → 0.

The hyperplane h(x) = f(c) +∇f(c) · (x− c) is a good approximation of f(x) near x = c.

2 First Order Condition

Definition 2.1 (Local maximal/minimal point): Let f : A → R and A is an open subset of Rn.
We say that c ∈ A is a local maximal (minimal) point of f if there exists δ > 0 such that

f(c) ≥ (≤)f(x)

for all ∥x− c∥ < δ.
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Theorem 2.1 (First Order Condition): Let f : A → R be differentiable where A is an open set
in Rn. If c is a local maximal or minimal point, then

∇f(c) = 0.

Proof. We will prove the case when c is a local maximal point. Assume the contrary that ∇f(c) ̸= 0. Then
there exists a unit vector u such that Duf(c) = ∇f(c) · u > 0. But since c is a local maximal point, for any
x = c+ tu with small enough t > 0,

f(c+ tu)− f(c)

t
< 0.

Therefore,

Duf(c) = lim
t→0+

f(c+ tu)− f(c)

t
≤ 0.

A contradiction.

The first order condition is a necessary condition for a point to be a local maximal or minimal point.
A point c with ∇f(c) = 0 but is neither local maximal nor minimal is called a saddle point.

3 Second Order Condition

Definition 3.1 (Twice Differentiability): Let f : A → R be differentiable where A is an open set
in Rn. We say that f is twice differentiable at c if ∂f

∂xi
(x) is differentiable at c for all coordinate xi.

The matrix

H(c) =



∂f
∂x1∂x1

(c) ∂f
∂x1∂x2

(c) · · · ∂f
∂x1∂xn

(c)

∂f
∂x2∂x1

(c) ∂f
∂x2∂x2

(c) · · · ∂f
∂x2∂xn

(c)
...

∂f
∂xn∂x1

(c) ∂f
∂xn∂x2

(c) · · · ∂f
∂xn∂xn

(c)

 =


∇ ∂f

∂x1
(c)⊺

∇ ∂f
∂x2

(c)⊺

...

∇ ∂f
∂xn

(c)⊺


is called the Hessian of f at c. The Hessian is symmetric when the cross derivatives are continuous at c
(Schwartz’s Theorem).

Theorem 3.1: Let f : A → R be differentiable on A ⊂ Rn. f is twice differentiable at c with hessian
H(c) if and only if

f(c+ u) = f(c) +∇f(c)⊺u+
1

2
u⊺H(c)u+ r(u)

with r(u) = o(∥u∥2) as u → 0.

Definition 3.2 (Positive-Definite, Negative-Definite and Indefinite Matrix): Let A ∈ Rn×n

be a symmetric matrix. If for all v ∈ Rn,

v⊺Av > (<)0,
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then we say that A is a positive-definite (negative-definite) matrix. If there exists u, v ∈ Rn such that

u⊺Au > 0, v⊺Av < 0,

then we say that A is an indefinite matrix.

Theorem 3.2 (Second Order Condition): Let f : A → R be twice continuously differentiable on
A with hessian H(c). Suppose ∇f(c) = 0.

1. If H(c) is negative-definite, then c is a local maximal point.

2. If H(c) is positive-definite, then c is a local minimal point.

3. If H(c) is indefinite, then c is a saddle point.

Proof. Suppose H(c) is a negative-definite matrix. By Theorem 3.1, we can write

f(c+ v) = f(c) +
1

2
v⊺H(c)v + r(v),

where r(v) = o(∥v∥2). Since the function k(v) = v⊺H(c)v is continuous on the unit sphere (which is closed
and bounded),

m = max
∥v∥=1

v⊺H(c)v < 0

exists. There exists δ > 0 such that for all ∥v∥ < δ,

|r(v)| <
∣∣∣m
4

∣∣∣ ∥v∥2 .
Observe that for all v with ∥v∥ < δ,

f(c+ v) = f(c) +
1

2
v⊺H(c)v + r(v)

≤ f(c) +
m

2
∥v∥2 − m

4
∥v∥2

< f(c).

The second order condition is a sufficient condition for a point to be a local maximal/minimal or a
saddle point.

4 Sylvester’s Criterion

Definition 4.1 (Principal Minor): A principal minor of an n × n matrix A is the determinant of
some smaller square matrix formed by removing the same rows and columns of A.

Definition 4.2 (Leading Principal Minor): The kth leading principal minor of an n×n matrix A
is the determinant of the smaller square matrix formed by keeping the first k rows and columns of A.

Example 4.1:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 .
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A principal minor is obtained by deleting the same rows and columns. For example, if we delete the 2nd
and 4th rows and columns, we get the submatrix[

1 3
9 11

]
,

whose determinant is 74. Thus, 74 is one of the principal minors of A. The 3rd leading principal minor of A
is the determinant of 1 2 3

5 6 7
9 10 11

 .

Theorem 4.1 (Sylvester’s criterion): Let M be an n×n symmetric matrix. Write ∆k as M ’s kth

leading principal minor.

(i) M is positive-definite if and only if ∆k > 0 for all 1 ≤ k ≤ n.

(ii) M is negative-definite if and only if (−1)k∆k > 0 for all 1 ≤ k ≤ n.

(iii) M is indefinite if and only if the first ∆k that breaks both pattern above is nonzero.

(iv) Sylvester criterion is inconclusive if the first ∆k that breaks both pattern is zero.
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