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1 Differentiable Functions on R

Definition 1.1 (Differentiable at a Point): A function f : (a,b) — R is differentiable at a point ¢
if for all {z,,} C [a,b] that converges to c,

T fzn) = f(c)
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exists and equals the same value. This value is called the derivative of f at ¢, denoted f’(c).
From the definition we can immediately see that if f is differentiable at ¢, then it is also continuous at c.

Definition 1.2 (Derivative of a Function): If a function f : (a,b) — R is differentiable everywhere
n (a,b), we say that the function is differentiable. f’(x) is well-defined for all z € (a,b), and thus is
also a function on (a,b). An alternative notation is %f(x).

Here are some common rules for taking derivatives:

« Power Rule: -L[z"] =nz""!, neR.

o Constant Multiple Rule: %[c f@)] =c- f(x).
Llf(@) £ g(@)] = f'(2) £ ¢ (2).
)| = f'(@)g(x) + f(x)g'(x).

dx

(x

] I (@)g(x)—f(x)g' (=)
lg(=)]? :

o Sum/Difference Rule:

+ Product Rule: L[f(z)g

d
¢ Quotient Rule: d—[

e Chain Rule: di[ (g(x)] = f'(g(x)) - ¢' ().

2 Big O, Little o
If a function is differentiable at a point ¢, then the linear function

h(z) = f(c) + f'(c)(x —c)

provides a “good” approximation of f(x) near x = c¢. But what exactly do we mean by good? To make this
precise, let us introduce the concepts of big O and little o notation.

*This TA note was prepared for the Econ PhD math camp taught by Prof. John Kennan at UW-Madison in 2025. All errors
are mine.



Definition 2.1 (Big O): We say that a function f(z) is of O(g(x)) as x — ¢, written as f(z) =
O(g(z)) as & — ¢, if there exists §, M > 0 such that for all |z — ¢| < 6,

|f(@)| < M|g(z)].

f(x) =0(g(x)) as x — ¢ means f(z) is bounded by a constant multiple of g(z) near z = c.

Example 2.1: If f is differentiable at ¢, then f(z) — f(c) = O(|x — ¢|). This is because

f(z) = f(c)
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lim =1f'(c)| < .
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Example 2.2: f being continuous at ¢ does not necessarily mean that f(z)— f(c) = O(|x —c|). For example,
f(z) = y/|z| is continuous at & = 0, however,

lim 7'|$‘
x—0

= lim |z|7'/? = co.
‘x| z—0

Definition 2.2 (Little 0): We say that a function f(x) is of o(g(z)) as  — ¢, written as f(z) =
o(g(z)) as ¢ — ¢, if
f(x)

lim
g(z
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f(z) = o(g(x)) as x — ¢ means f(x) becomes negligible compared to g(z) as x approaches c.
Here are some rules regarding big O and little o.

L f(z) = o(g(z)) = f(z)=O(g(x))
2. f(z) = 0(g(2)) = af(z) =0(g(x)), [fl(z)=o(g(r)) = af(z)=o(g(z))
3. f(z) = O(g()), h(z) = O(g(x)) = f(x)+ h(z) = O(g(x)).
f(x) = o(g(x)), h(z) = o(g(x)) = [f(x)+ h(z) = o(g(x)).
4. f(x) = O(g(x)), h(z) = O(k(x)) = f(z)h(x) = O(g(x)k(x))
f(z) = O(g(x)), h(x) = o(k(z)) = f(z)h(z) = o(g(x)k(x))
5. f(x) = O(g(x)), g(x) = O(h(z)) = f(x) = O(h(x)).
f(z) = 0(g(2)), g(z) = o(h(x)) = f(x) = o(h(x)).
f(z) = o(g(2)), g(z) = O(h(zx)) = f(z) = o(h(x)).

Theorem 2.1: A function f : [a,b] — R is differentiable at ¢ with derivative f’(c) if and only if

f@@) = (f(e) + f(e)(x = c)) = o(|z — c]),

or alternatively,

f(@) = f(e) + f/(d)(x — ) + o(|z — c]).

Thus, saying a function is differentiable at ¢ means that the error — the difference between f(z) and its
linear approximation — goes to 0 faster than the distance between x and c.
Let us use the big O and little o notation to prove the chain rule.



Theorem 2.2 (Chain Rule): Let g : (a1,b1) — R, f : (a2,b2) — R where (a2,b2) D g(a1,b1).
Suppose ¢ is differentiable at ¢ € (a1,b;) and f is differentiable at g(c), then h(z) = f(g(z)) is
differentiable at ¢ with derivative f’(g(c))g’(c).

Proof. As x approahes c,

flg(x)) = f(g(e)) + f'(9(c))(g(x) — 9(c)) + o(lg(x) — g(c)])
Fg(e)) + f(g(e)g ()@ = ) + f'(g(c))g' (c)o|x = ¢f) + olg(x) — g(c)])
= f(g()) + f'(9(e)g () (x — ¢) + o]z — c]).

Note that |g(x) —g(c)| = O(|x —¢]), and thus o(|g(z) — g(c)|) = o(|lz — c[) by rule 5, f(9(c))g' (c)o(|lz —c|) =
o(Jz — ¢|) by rule 2, and the sum of them is still o(|z — ¢|) by rule 3.

O

3 First Order Condition, Rolle’s Theorem, Mean Value Theorem

Theorem 3.1 (First Order Condition): Let f : (a,b) — R be differentiable. If f attains a local
maximum or minimum at some point ¢ € (a,b), then f'(c) =

Proof. We prove the case when ¢ is a maximal point. Since f is differentiable at c,

fl@) = fle)+ f(c) (@ —c) + r(x),

where r(x) = o(|Jz —¢|) as  — ¢. If f’(¢) > 0, then there exists a small enough ¢ such that for all |z —¢| < 4,
r(z) < ’@(.ﬁ - c)’ Therefore, for all |z — ¢| < §, f(x) > ¢, a contradiction. The proof that f’(c) cannot

be smaller than 0 is the same. O

Note that the First Order Condition is a necessary condition for a point to be a local maximal/minimal
point. A function f can have a derivative equal to 0 at some point x, even if z is neither a maximum nor a
minimum.

Example 3.1: Consider f(z) = x3. f/(x) = 0 but # = 0 is neither a local maximal nor a local minimal
point.

Suppose f : [a,b] — R and f(a) = f(b), then f must attain a global maximum or minimum in (a,b).
This leads to Rolle’s Theorem:

Theorem 3.2 (Rolle’s Theorem): Let f : [a,b] — R be differentiable on (a,b). If f(a) = f(b), then
there exists ¢ € (a,b) such that f/(c) = 0.

The generalization of Rolles’s theorem is the Mean Value Theorem:

Theorem 3.3 (Mean Value Theorem): Let f : [a,b] — R be differentiable on (a,b). Then there
exists ¢ € (a,b) such that

Proof. Write 6 = w. Let us consider the function:

h(z) = f(z) — 0(z — a).



Note that h(a) = h(b) = f(a). By Rolle’s Theorem, there exists ¢ € (a,b) such that h'(c) = 0. But note that
W (z) = f'(z) — 0.
Therefore, h'(c) =0 = f'(c) = 6. O
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