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1 Differentiable Functions on R

Definition 1.1 (Differentiable at a Point): A function f : (a, b) → R is differentiable at a point c
if for all {xn} ⊂ [a, b] that converges to c,

lim
n→∞

f(xn)− f(c)

xn − c

exists and equals the same value. This value is called the derivative of f at c, denoted f ′(c).

From the definition we can immediately see that if f is differentiable at c, then it is also continuous at c.

Definition 1.2 (Derivative of a Function): If a function f : (a, b) → R is differentiable everywhere
in (a, b), we say that the function is differentiable. f ′(x) is well-defined for all x ∈ (a, b), and thus is
also a function on (a, b). An alternative notation is d

dxf(x).

Here are some common rules for taking derivatives:

• Power Rule: d
dx [x

n] = nxn−1, n ∈ R.

• Constant Multiple Rule: d
dx [c · f(x)] = c · f ′(x).

• Sum/Difference Rule: d
dx [f(x)± g(x)] = f ′(x)± g′(x).

• Product Rule: d
dx [f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

• Quotient Rule: d
dx

[
f(x)
g(x)

]
= f ′(x)g(x)−f(x)g′(x)

[g(x)]2 .

• Chain Rule: d
dx [f(g(x))] = f ′(g(x)) · g′(x).

2 Big O, Little o
If a function is differentiable at a point c, then the linear function

h(x) = f(c) + f ′(c)(x− c)

provides a “good” approximation of f(x) near x = c. But what exactly do we mean by good? To make this
precise, let us introduce the concepts of big O and little o notation.

∗This TA note was prepared for the Econ PhD math camp taught by Prof. John Kennan at UW-Madison in 2025. All errors
are mine.
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Definition 2.1 (Big O): We say that a function f(x) is of O(g(x)) as x → c, written as f(x) =
O(g(x)) as x → c, if there exists δ,M > 0 such that for all |x− c| < δ,

|f(x)| ≤ M |g(x)|.

f(x) = O(g(x)) as x → c means f(x) is bounded by a constant multiple of g(x) near x = c.

Example 2.1: If f is differentiable at c, then f(x)− f(c) = O(|x− c|). This is because

lim
x→c

∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ = |f ′(c)| < ∞.

Example 2.2: f being continuous at c does not necessarily mean that f(x)−f(c) = O(|x−c|). For example,
f(x) =

√
|x| is continuous at x = 0, however,

lim
x→0

∣∣∣∣∣
√

|x|
|x|

∣∣∣∣∣ = lim
x→0

|x|−1/2 → ∞.

Definition 2.2 (Little o): We say that a function f(x) is of o(g(x)) as x → c, written as f(x) =
o(g(x)) as x → c, if

lim
x→c

∣∣∣∣f(x)g(x)

∣∣∣∣ = 0.

f(x) = o(g(x)) as x → c means f(x) becomes negligible compared to g(x) as x approaches c.
Here are some rules regarding big O and little o.

1. f(x) = o(g(x)) =⇒ f(x) = O(g(x)).

2. f(x) = O(g(x)) =⇒ αf(x) = O(g(x)), f(x) = o(g(x)) =⇒ αf(x) = o(g(x)).

3. f(x) = O(g(x)), h(x) = O(g(x)) =⇒ f(x) + h(x) = O(g(x)).
f(x) = o(g(x)), h(x) = o(g(x)) =⇒ f(x) + h(x) = o(g(x)).

4. f(x) = O(g(x)), h(x) = O(k(x)) =⇒ f(x)h(x) = O(g(x)k(x)).
f(x) = O(g(x)), h(x) = o(k(x)) =⇒ f(x)h(x) = o(g(x)k(x)).

5. f(x) = O(g(x)), g(x) = O(h(x)) =⇒ f(x) = O(h(x)).
f(x) = O(g(x)), g(x) = o(h(x)) =⇒ f(x) = o(h(x)).
f(x) = o(g(x)), g(x) = O(h(x)) =⇒ f(x) = o(h(x)).

Theorem 2.1: A function f : [a, b] → R is differentiable at c with derivative f ′(c) if and only if

f(x)− (f(c) + f ′(c)(x− c)) = o(|x− c|),

or alternatively,

f(x) = f(c) + f ′(c)(x− c) + o(|x− c|).

Thus, saying a function is differentiable at c means that the error — the difference between f(x) and its
linear approximation — goes to 0 faster than the distance between x and c.

Let us use the big O and little o notation to prove the chain rule.
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Theorem 2.2 (Chain Rule): Let g : (a1, b1) → R, f : (a2, b2) → R where (a2, b2) ⊃ g(a1, b1).
Suppose g is differentiable at c ∈ (a1, b1) and f is differentiable at g(c), then h(x) = f(g(x)) is
differentiable at c with derivative f ′(g(c))g′(c).

Proof. As x approahes c,

f(g(x)) = f(g(c)) + f ′(g(c))(g(x)− g(c)) + o(|g(x)− g(c)|)
= f(g(c)) + f ′(g(c))g′(c)(x− c) + f ′(g(c))g′(c)o(|x− c|) + o(|g(x)− g(c)|)
= f(g(c)) + f ′(g(c))g′(c)(x− c) + o(|x− c|).

Note that |g(x)− g(c)| = O(|x− c|), and thus o(|g(x)− g(c)|) = o(|x− c|) by rule 5, f ′(g(c))g′(c)o(|x− c|) =
o(|x− c|) by rule 2, and the sum of them is still o(|x− c|) by rule 3.

3 First Order Condition, Rolle’s Theorem, Mean Value Theorem

Theorem 3.1 (First Order Condition): Let f : (a, b) → R be differentiable. If f attains a local
maximum or minimum at some point c ∈ (a, b), then f ′(c) = 0.

Proof. We prove the case when c is a maximal point. Since f is differentiable at c,

f(x) = f(c) + f ′(c)(x− c) + r(x),

where r(x) = o(|x− c|) as x → c. If f ′(c) > 0, then there exists a small enough δ such that for all |x− c| < δ,
r(x) <

∣∣∣ f ′(c)
2 (x− c)

∣∣∣. Therefore, for all |x − c| < δ, f(x) > c, a contradiction. The proof that f ′(c) cannot
be smaller than 0 is the same.

Note that the First Order Condition is a necessary condition for a point to be a local maximal/minimal
point. A function f can have a derivative equal to 0 at some point x, even if x is neither a maximum nor a
minimum.

Example 3.1: Consider f(x) = x3. f ′(x) = 0 but x = 0 is neither a local maximal nor a local minimal
point.

Suppose f : [a, b] → R and f(a) = f(b), then f must attain a global maximum or minimum in (a, b).
This leads to Rolle’s Theorem:

Theorem 3.2 (Rolle’s Theorem): Let f : [a, b] → R be differentiable on (a, b). If f(a) = f(b), then
there exists c ∈ (a, b) such that f ′(c) = 0.

The generalization of Rolles’s theorem is the Mean Value Theorem:

Theorem 3.3 (Mean Value Theorem): Let f : [a, b] → R be differentiable on (a, b). Then there
exists c ∈ (a, b) such that

f(b)− f(a)

b− a
= f ′(c).

Proof. Write θ = f(b)−f(a)
b−a . Let us consider the function:

h(x) := f(x)− θ(x− a).
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Note that h(a) = h(b) = f(a). By Rolle’s Theorem, there exists c ∈ (a, b) such that h′(c) = 0. But note that

h′(x) = f ′(x)− θ.

Therefore, h′(c) = 0 =⇒ f ′(c) = θ.

4


	Differentiable Functions on R
	Big O, Little o
	First Order Condition, Rolle's Theorem, Mean Value Theorem

