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1 Concave and Convex Functions on R
Definition 1.1 (Concave): A function f : (a,b) — R is said to be concave (convex) if for all
x #y € (a,b) and X € (0,1),
fOz+ (1= Ny) > Af(z) + (1 =N f(y)
(<)

If the inequality is strict for any  # y and A € (0,1), then we say that f is strictly convex (concave).
Below are graphs of a concave and a convex function.

5,,

1 2 3 4 5 1 2 3 4 )
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From now on, we state all theorems in terms of concave functions.

Theorem 1.1: Let f : (a,b) = R be concave. Then for all a < s < u < t < b, we have

fw) = f(s) () = () f() = f(w)

U— S t—s t—u

The inequalities are strict if f is strictly concave.

*This TA note was prepared for the Econ PhD math camp taught by Prof. John Kennan at UW-Madison in 2025. All errors
are mine.
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Proof. There exists A € (0,1) such that u = As + (1 — A)t. Then by concavity of f,
FOs+ (1= Nt) = Af(s) + (1= ) f (D).
Observe that
flu) = f(s) _ fs+ (1= Nt)— f(s)

u—s  (A=Ds+(1—-Mt
S A=Df(s) + A =NFf) _ () = f(s)
- A=-Ds+(0-Nt t—s

@) = f(uw) _ f() = FAs+ (1= N)1)

t—u At — s
< MO =Af(s) _ () = f(s)
- AM-—)s t—s

where we used the previous inequality to get the two inequalities. O

The following graph illustrates the theorem.
2 Right and Left Derivatives and Subgradient

Definition 2.1 (Right and Left Derivative): A function f : (a,b) — R is said to be right (left)
differentiable at c if, for any sequence {z,} with z,, > (<)c and z,, — ¢, the limit

T fzn) = f(c)

n—00 Tp —C

exists and is the same for all such sequence. This common value is called the right (left) derivative
of f at ¢, denoted by f'(c+) (f'(c—)).

Remark: A function may be both right differentiable and left differentiable at ¢, yet still fail to be differ-
entiable at ¢ if the right and left derivatives are not equal. The following graph illustrates a function that
has both right and left derivatives at « = 1, but is not differentiable at x = 1.

Theorem 2.1: Let f : (a,b) — R be concave. Then f is both right and left differentiable at any point
c € (a,b). Moreover, f'(c—) > f'(c+).
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Proof. Fix ¢ € (a,b). We prove that f is right differentiable. Consider the set of slopes:
A:{f(z)_f(c):xe(a,b), x>c}.

r—cC

This set is bounded from above by w where k = (c+a)/2 by Theorem 1.1. Hence, it has a supremum:
v = sup A. We show that v is the right derivative. Let x,, > ¢ and x,, — ¢, and let ¢ > 0. By the definition

of supremum, there exists z > x such that

f(z) = f(o)

zZ—cC

>V — €.

Since x, — ¢, there exists N € N such that for all n > N, we have z < z,, < 2z, and thus

flan) = fle) _ f(z) = f(e)

v > > >V —€
Ty —C z—c
by Theorem 1.1. We have thus proved
lim f(xn) B f(C) — 0.
n—o00 Ty, —C

One can show similarly that f is left differentiable with left derivative inf B where
B:{Jw:xe(a,b), x<c}.

Since for all a € A,b € B, a > b by Theorem 1.1, we have f'(c+) = sup A <inf B = f/(c—). O

Corollary (Continuity of a Concave Function): Let f : (a,b) — R be concave. Then f is
continuous at all inner points, namely, f is continuous on (a, b).

Proof. Fix ¢ € (a,b). Since f has a right derivative, for any sequence z,, > ¢ with z,, — ¢,

i $@0) = £

n—00 Ty —C

= f'(ch).

Because xz,, — ¢ — 0, it follows that f(z,)— f(c¢) — 0. Similarly, if z,, < ¢ and z,, — ¢, then f(z,)— f(c) = 0
as well. Thus, for any sequence z,, — ¢, we obtain

lim f(z,) = f(c).

n—roo



Definition 2.2 (Subgradient): Let f : (a,b) — R be concave. For any ¢ € (a,b), a number
v € [f'(c+), f'(c—)] is called a subgradient of f at c¢. The interval [f'(c+), f'(c—)] is called the
subdifferential of f at c.

Theorem 2.2: Let f : (a,b) — R be concave, and let v be a subgradient of f at ¢. Then the tangent
line

hz) = f(c) +v(z —c)
lies above f(z), i.e., h(z) > f(x) for all z € (a,b).

Proof. For any x > c,

w < fllet) <v = f(z) < fe) +v(z — ).
For any = < ¢,
T =IO s prey 20 = 1) < fl0) + vla— ).

O

The following graph illustrates Theorem 2.2. If f is concave, then every tangent line at a point lies above
the graph of the function.
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3 Extreme Points

Theorem 3.1 (Necessary and Sufficient Condition for Maximal Points): Let f : (a,b) = R
be a concave function. Then ¢ € (a,b) is a global maximal point if and only if 0 is a subgradient of
f. Namely, 0 € [f'(c+), f'(c—)].

Proof. (= ): Suppose f'(c—) < 0. Recall that
f'(c—) = inf {f(a:) —fo) tx < c} )

Tr—cC



Therefore, there exists z < ¢ such that W < 0. But then this implies f(x) — f(¢) > 0, a contradiction.
Hence, f'(c—) > 0. Similarly, one can prove that f/(c+) < 0.
(<= ): By Theorem 2.2, h(z) = f(c) +0(x — ¢) = f(c) > f(x) for all z € (a,b). O

Theorem 3.2: Let f : (a,b) — R be a strictly concave function. Then f has at most one global
maximal point.

Proof. Assume x # y are both global maximal points, f(z) = f(y) = ¢. Consider z = 0.5z + 0.5y. Then
f(z) > 0.5f(z) +0.5f(y) > ¢, a contradiction. O

Theorem 3.3: Let f : (a,b) — R be a concave function. If f has a global minimal point, then f
must be constant.

Proof. We show that if ¢ € (a,b) is a global minimal point, then f(z) must be a constant function on (a,b).
Take any z,y € (a,b) such that < ¢ < y. Since c lies strictly between a and b, we can write

c=Xx+(1-Ny
for some A € (0,1). By concavity,
fle)=fAz+ (1= Ny) = Af(z) + (1= A)f(y).

This implies f(c) > f(z) or f(c) > f(y). Without loss of generality, assume f(c) > f(x).
Since ¢ is a global minimal point, we also have f(c) < f(z) and f(¢) < f(y). Hence, f(c) = f(z).
Substituting into the concavity inequality gives

F) 2 A+ 1 =Nfly) = [flc) = f(y)
Therefore, we also have f(y) = ¢. We conclude that f(z) = f(y) = c. O
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