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1 Concave and Convex Functions on R

Definition 1.1 (Concave): A function f : (a, b) → R is said to be concave (convex) if for all
x ̸= y ∈ (a, b) and λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

(≤)

If the inequality is strict for any x ̸= y and λ ∈ (0, 1), then we say that f is strictly convex (concave).
Below are graphs of a concave and a convex function.
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(a) A Concave Function
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(b) A Convex Function

From now on, we state all theorems in terms of concave functions.

Theorem 1.1: Let f : (a, b) → R be concave. Then for all a < s < u < t < b, we have

f(u)− f(s)

u− s
≥ f(t)− f(s)

t− s
≥ f(t)− f(u)

t− u

The inequalities are strict if f is strictly concave.

∗This TA note was prepared for the Econ PhD math camp taught by Prof. John Kennan at UW-Madison in 2025. All errors
are mine.
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Proof. There exists λ ∈ (0, 1) such that u = λs+ (1− λ)t. Then by concavity of f ,

f(λs+ (1− λ)t) ≥ λf(s) + (1− λ)f(t).

Observe that
f(u)− f(s)

u− s
=

f(λs+ (1− λ)t)− f(s)

(λ− 1)s+ (1− λ)t

≥ (λ− 1)f(s) + (1− λ)f(t)

(λ− 1)s+ (1− λ)t
=

f(t)− f(s)

t− s
,

f(t)− f(u)

t− u
=

f(t)− f(λs+ (1− λ)t)

λt− λs

≤ λf(t)− λf(s)

λt− λs
=

f(t)− f(s)

t− s
,

where we used the previous inequality to get the two inequalities.

The following graph illustrates the theorem.

2 Right and Left Derivatives and Subgradient

Definition 2.1 (Right and Left Derivative): A function f : (a, b) → R is said to be right (left)
differentiable at c if, for any sequence {xn} with xn > (<)c and xn → c, the limit

lim
n→∞

f(xn)− f(c)

xn − c

exists and is the same for all such sequence. This common value is called the right (left) derivative
of f at c, denoted by f ′(c+) (f ′(c−)).

Remark: A function may be both right differentiable and left differentiable at c, yet still fail to be differ-
entiable at c if the right and left derivatives are not equal. The following graph illustrates a function that
has both right and left derivatives at x = 1, but is not differentiable at x = 1.

Theorem 2.1: Let f : (a, b) → R be concave. Then f is both right and left differentiable at any point
c ∈ (a, b). Moreover, f ′(c−) ≥ f ′(c+).
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Proof. Fix c ∈ (a, b). We prove that f is right differentiable. Consider the set of slopes:

A =

{
f(x)− f(c)

x− c
: x ∈ (a, b), x > c

}
.

This set is bounded from above by f(c)−f(k)
c−k where k = (c+a)/2 by Theorem 1.1. Hence, it has a supremum:

v = supA. We show that v is the right derivative. Let xn > c and xn → c, and let ϵ > 0. By the definition
of supremum, there exists z > x such that

f(z)− f(c)

z − c
> v − ϵ.

Since xn → c, there exists N ∈ N such that for all n ≥ N , we have x < xn < z, and thus

v ≥ f(xn)− f(c)

xn − c
≥ f(z)− f(c)

z − c
> v − ϵ

by Theorem 1.1. We have thus proved

lim
n→∞

f(xn)− f(c)

xn − c
= v.

One can show similarly that f is left differentiable with left derivative inf B where

B =

{
f(x)− f(c)

x− c
: x ∈ (a, b), x < c

}
.

Since for all a ∈ A, b ∈ B, a ≥ b by Theorem 1.1, we have f ′(c+) = supA ≤ inf B = f ′(c−).

Corollary (Continuity of a Concave Function): Let f : (a, b) → R be concave. Then f is
continuous at all inner points, namely, f is continuous on (a, b).

Proof. Fix c ∈ (a, b). Since f has a right derivative, for any sequence xn > c with xn → c,

lim
n→∞

f(xn)− f(c)

xn − c
= f ′(c+).

Because xn−c → 0, it follows that f(xn)−f(c) → 0. Similarly, if xn < c and xn → c, then f(xn)−f(c) → 0
as well. Thus, for any sequence xn → c, we obtain

lim
n→∞

f(xn) = f(c).
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Definition 2.2 (Subgradient): Let f : (a, b) → R be concave. For any c ∈ (a, b), a number
v ∈ [f ′(c+), f ′(c−)] is called a subgradient of f at c. The interval [f ′(c+), f ′(c−)] is called the
subdifferential of f at c.

Theorem 2.2: Let f : (a, b) → R be concave, and let v be a subgradient of f at c. Then the tangent
line

h(x) = f(c) + v(x− c)

lies above f(x), i.e., h(x) ≥ f(x) for all x ∈ (a, b).

Proof. For any x > c,

f(x)− f(c)

x− c
≤ f ′(c+) ≤ v =⇒ f(x) ≤ f(c) + v(x− c).

For any x < c,

f(x)− f(c)

x− c
≥ f ′(c−) ≥ v =⇒ f(x) ≤ f(c) + v(x− c).

The following graph illustrates Theorem 2.2. If f is concave, then every tangent line at a point lies above
the graph of the function.
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3 Extreme Points

Theorem 3.1 (Necessary and Sufficient Condition for Maximal Points): Let f : (a, b) → R
be a concave function. Then c ∈ (a, b) is a global maximal point if and only if 0 is a subgradient of
f . Namely, 0 ∈ [f ′(c+), f ′(c−)].

Proof. ( =⇒ ): Suppose f ′(c−) < 0. Recall that

f ′(c−) = inf

{
f(x)− f(c)

x− c
: x < c

}
.
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Therefore, there exists x < c such that f(x)−f(c)
x−c < 0. But then this implies f(x)− f(c) > 0, a contradiction.

Hence, f ′(c−) ≥ 0. Similarly, one can prove that f ′(c+) ≤ 0.
( ⇐= ): By Theorem 2.2, h(x) = f(c) + 0(x− c) = f(c) ≥ f(x) for all x ∈ (a, b).

Theorem 3.2: Let f : (a, b) → R be a strictly concave function. Then f has at most one global
maximal point.

Proof. Assume x ̸= y are both global maximal points, f(x) = f(y) = c. Consider z = 0.5x + 0.5y. Then
f(z) > 0.5f(x) + 0.5f(y) > c, a contradiction.

Theorem 3.3: Let f : (a, b) → R be a concave function. If f has a global minimal point, then f
must be constant.

Proof. We show that if c ∈ (a, b) is a global minimal point, then f(x) must be a constant function on (a, b).
Take any x, y ∈ (a, b) such that x < c < y. Since c lies strictly between a and b, we can write

c = λx+ (1− λ)y

for some λ ∈ (0, 1). By concavity,

f(c) = f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

This implies f(c) ≥ f(x) or f(c) ≥ f(y). Without loss of generality, assume f(c) ≥ f(x).
Since c is a global minimal point, we also have f(c) ≤ f(x) and f(c) ≤ f(y). Hence, f(c) = f(x).

Substituting into the concavity inequality gives

f(c) ≥ λf(c) + (1− λ)f(y) =⇒ f(c) ≥ f(y).

Therefore, we also have f(y) = c. We conclude that f(x) = f(y) = c.
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