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1 Sets and Functions

1.1 Set
A set is a non-ordered collection of objects. We can define a set by naming all objects in the set. For
example S = {1, 2, 3}. We can also define a set by describing it:

S = {s : P (s)},

where P (·) is a predicate. This set collects all objects s such that P (s) is true. Here is a list of commonly
used notation in set theory.

1. x ∈ A: x is an element of A, or equivalently, A includes x.

2. A ⊂ B: A is a subset of B, or equivalently, B contains A.

3. A ∪B : The union of A and B. x belongs to A ∪B if and only if x ∈ A or x ∈ B.

4. A ∩B: The intersection of A and B. x belongs to A ∩B if and only if x ∈ A and x ∈ B.

5.
∪

λ∈I Aλ: The union of all sets Aλ indexed by some λ ∈ I where I is some index set (I can be finite,
infinite, countable, or uncountable). x belongs to

∪
λ∈I Aλ if and only if x ∈ Aλ for some λ ∈ I.

6.
∩

λ∈I Aλ: The intersection of all sets Aλ indexed by some λ ∈ I. x belongs to
∩

λ∈I Aλ if and only if
x ∈ Aλ for all λ ∈ I.

7. A \B: This notation only appears when B ⊂ A. x belongs to A \B if x ∈ A and x /∈ B.

8. Ac: Suppose there is a universal set X. Ac = X \A, the complement of A. x belongs to Ac if x is not
in A.

9. A×B: The Cartesian product of A and B. A×B = {(a, b) : a ∈ A, b ∈ B}.

10. ×λ∈I
Aλ: The Cartesian product of Aλ’s.

Theorem 1.1 (De Morgan’s Law): The following is true

1. (A ∪B)c = Ac ∩Bc.

2. (A ∩B)c = Ac ∪Bc.

3.
(∪

λ∈I Aλ

)c
=

∩
λ∈I A

c
λ.

4.
(∩

λ∈I Aλ

)c
=

∪
λ∈I A

c
λ.

∗This TA note is based on Prof. John Kennan’s math camp lecture in 2025 at UW-Madison. All errors are mine.
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1.2 Functions
A function is a rule that assigns to each element of a set A (called the domain) exactly one element of a
set B (called the codomain). If f is a function from A to B, we write

f : A → B.

And for all element x ∈ A, we write f(x) ∈ B as the corresponding element in B.

Definition 1.1: We say that a function f : A → B is

• one-to-one (injective), if any two points in A are mapped to different points in B. For all a, b ∈ A,
a ̸= b =⇒ f(a) ̸= f(b).

• onto (surjective), if every point in B is mapped by some point in A. For all b ∈ B, there exists
a ∈ A such that f(a) = b

• bijective, if f is one-to-one and onto.

Let f : A → B. For any subset of the domain, A′ ⊂ A, the image of A is defined as,

f(A′) = {b ∈ B : b = f(a) for some a ∈ A′}.

It is the set of all points in B mapped by some point in A′. The image of the domain, f(A), is called the
range of the function. f is onto if and only if f(A) = B, that is, the range equals the codomain. For any
subset of the codomain, B′ ⊂ B, the preimage of B′ is defined as,

f−1(B′) = {a ∈ A : f(a) ∈ B′}.

It is the set of all points in A being mapped into B′. It is clear that f−1(B) = A.

1.3 Cardinality of a Set
The cardinality of a set refers to its size. For a finite set, this is simply the number of its elements. For
infinite sets, we compare cardinalities using functions. The notation |A| stands for the cardinality of a set
A.

Definition 1.2: For any two sets A and B, we say that |A| ≥ |B| if there exists an onto function
f : A → B.

An equivalent definition is that there exists a one-to-one function f : B → A.
Example 1.1: The cardinality of [0, 1] is the same as the cardinality of R.
Example 1.2: Surprisingly, |Rn| = |R| for all n ∈ N. There exists an onto function from R to Rn!

Definition 1.3: The power set of a set A, denoted by P(A), is the set of all subsets of A. That is,

P(A) = {S : S ⊆ A}.

Theorem 1.2 (Cantor): Let A be any set. Then the power set of A, P(A) has a strictly larger
cardinality than A, |P(A)| > |A|.

Proof. We want to show that there does not exist an onto function f : A → P(A). Assume the contrary
that there exists an onto function f : A → P(A). Consider the set

E = {a ∈ A : a /∈ f(a)}.
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Since f is onto, there exists e ∈ A such that E = f(e).

1. If e ∈ E: Then by the definition of E, e /∈ f(e) = E. A contradiction.

2. If e /∈ E: Then e /∈ f(e). By the definition of E, e ∈ E. A contradiction.

Since we reached a contradiction in either cases, there cannot exist such f .

Starting from N, and iterating the power set,

|N| < |P(N)| < |P(P(N))| < ...,

gives an infinite strictly increasing chain of distinct cardinalities by Theorem 1.2. Thus, there are infinite
different “sizes of infinity”.

Definition 1.4 (Countable): We say that a set A is countable if |A| ≤ |N|. If a set is not countable,
we say that it is uncountable.

Theorem 1.3: A countable union of countable sets remains countable. Any finite Cartesian
product of countable sets is still countable.

Example 1.3: Q is countable. R is uncountable by Cantor’s diagonal argument.

2 The Real line R

2.1 Supremum, Infimum and The Axiom of Completeness

Definition 2.1 (Bounded): For any set A ⊂ R, we say that A is bounded from above if there
exists b ∈ R such that b ≥ a for all a ∈ A. Such b is called an upper bound of A. On the other
hand, we say that A is bounded from below if there exists c ∈ R such that c ≤ a for all a ∈ A.
Such c is called a lower bound of A. If a set is both bounded from above and bounded from below,
we say that it is bounded.

A bounded set can have many upper bounds and many lower bounds. There is one upper (lower) bound
of special interest: the supremum (infimum).

Definition 2.2 (Supremum): Suppose A ⊂ R is bounded from above. The smallest among all its
upper bounds is called the supremum (or least upper bound), denoted supA.

Definition 2.3 (Infimum): Suppose A ⊂ R is bounded from below. The largest among all its lower
bounds is called the infimum (or greatest lower bound), denoted inf A.

How do we know that for a set that is bounded from above (below), the supremum (infimum) exists? In
fact, we don’t — we assume it. This is the axiom of completeness, a foundational property of the real
numbers. An axiom cannot be proven; it is accepted as a starting point on which the rest of the theory is
built.

Definition 2.4 (Axiom of Completeness): Every nonempty set A ⊂ R that is bounded from
above has a supremum in R. Similarly, every nonempty set A ⊂ R that is bounded from below has
an infimum in R.

3



Wait — we have used the word complete in two contexts: the axiom of completeness and the notion
of a complete metric space. How are these two concepts related? Later we will see that the Axiom of
Completeness actually implies that R is a complete metric space under the Euclidean metric. Recall that
Q is not a complete metric space. Essentially, R is the “completion” of Q — the smallest complete set that
contains Q.

Here we state an important yet straightfoward result:

Proposition 2.1: For any set A ⊂ R, if supA exists, then it is unique. Same for inf B.

2.2 Sequences in R and the Bolzano-Weierstrass Theorem

Definition 2.5 (Monotone): A sequence {xn} ⊂ R is called monotone if it is increasing: xn ≤ xn+1

for all n ∈ N, or if it is decreasing: xn ≥ xn+1 for all n ∈ N .

Here is a powerful result that basically relies on pure logic (and does not rely on the Axiom of Complete-
ness).

Theorem 2.1: Every sequence in R has a monotone subsequence.

Proof. Let {xn}∞n=1 be a sequence in R. We say that xn is a peak if any subsequent term is less than or
equal to it, namely, xm ≤ xn for all m ≥ n. So, if xn is not a peak, it means that xm > xn for some m > n.
We separate two cases:

• The sequence has infinite peaks: Write {xnk
}∞k=1 be the sequence of peaks. By the definition of peaks,

xn1 ≥ xn2 ≥ xn3 ...

Henceforth, the sequence of peaks is an increasing subsequence.

• The sequence has finite peaks: This means that we can find the last peak in the sequence. Suppose
xn is the last peak. We construct a decreasing sequence as follows: We know that xn+1 is not a peak.
Therefore, ∃m1 > n + 1 such that xn+1 < xm1

. xm1
is also not a peak, and thus ∃m2 > m1 such

that xm1 < xm2 . xm2 is again not a peak, and thus ∃m3 > m2 such that xm2 < xm3 . Inductively, we
construct a strictly increasing sequence

xm1 < xm2 < xm3 < ...

{xmk
}∞k=1 is a monotone subsequence. (If the sequence has no peak at all, we can just start the process

from x1).

Since the statement is true for both cases, the proof is done. The figures below illustrate the construction of a
monotone subsequence in each case, where the red dots indicate the selected elements for the subsequence.

n

xn

(a) Infinite Peaks

n

xn the last peak

(b) Finite Peaks
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The following is a useful characterization of the supremum.

Proposition 2.2: For any set A ⊂ R, a = supA if and only if

1. For all ϵ > 0, there exists x ∈ A such that x > a− ϵ.

2. For all ϵ > 0, x < a+ ϵ for all x ∈ A.

Similarly, a = inf A if and only if

1. For all ϵ > 0, there exists x ∈ A such that x < a+ ϵ.

2. For all ϵ > 0, x > a− ϵ for all x ∈ A.

The proof of the following theorem relies on the Axiom of Completeness.

Theorem 2.2 (Monotone Convergence Theorem): Any bounded monotone sequence in R con-
verges. Specifically, any increasing sequence converges to its supremum, and any decreasing sequence
converges to its infimum.

Proof. Let {xk} be a bounded increasing sequence in R. By the Axiom of Completeness, x = sup{xk} exists.
Fix ϵ > 0. By Proposition 2.2, there exists xn > x− ϵ. But since {xk} is increasing, xk > x− ϵ for all k ≥ n.
Therefore, x− ϵ < xk < x+ ϵ for all k ≥ n.

The proof is identical for a bounded decreasing sequence.

Theorem 2.3 (Bolzano-Weierstrass Theorem): Every bounded sequence in R has a convergent
subsequence.

Proof. The conclusion follows immediately from combining Theorem 2.1 and Theorem 2.2.

2.3 Completeness of R
With Bolzano-Weierstrass Theorem established, we are ready to prove that R is a complete metric space.
Note that Bolzano-Weierstrass Theorem holds because of the Axiom of Completeness: the proof of the
theorem uses Monotone Convergence Theorem, whose proof, in turn, depends on the Axiom of Completeness.

Theorem 2.4: R is a complete metric space under the Euclidean metric.

Proof. Let {xk}nk=1 be a Cauchy sequence in R. We first show that it is bounded, and then we apply the
Bolzano-Weierstrass Theorem. There exists N ∈ N such that for all n,m ∈ N, |xn − xm| < 1. So, starting
from xN , all subsequent terms in the sequence is bounded from above by xN + 2, and bounded from below
by xN −2. Therefore, the whole sequence is bounded from above by max{x1, ..., xN−1, xN +2} and bounded
from below by min{x1, ..., xN−1, xN−2}.

By Bolzano-Weierstrass Theorem (Theorem 2.3), {xn} has a convergent subsequence {xnk
}∞k=1. Say it

converges to x. Fix ϵ > 0. There exists M1 such that for all nk > M1, |xnk
−x| < ϵ/2. Since {xn} is Cauchy,

there exists M2 such that for all n,m ≥ M2, |xn − xm| < ϵ/2. Let K be such that nK > max{M1,M2}.
Then for all n ≥ M1,

|xn − x| ≤ |xn − xnK
|+ |xnK

− x| < ϵ/2 + ϵ/2 = ϵ.
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2.4 Limit Superior and Limit Inferior

Definition 2.6 (Limsup): Let {xn} be bounded from above and let yn = supk≥n xk. limn→∞ yn is
called the limit sup of {xn}, denoted lim supn→∞ xn.

Remark: Note that {yn} is a decreasing sequence. Therefore, the existence of limn→∞ yn is guaranteed by
Monotone Convergence Theorem.

We can similarly define lim infn→∞ xn for a sequence {xn} that is bounded from below.

Theorem 2.5: A sequence {xn} converges if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn = x.

Proof. We first prove the if part. Suppose

lim sup
n→∞

xn = lim inf
n→∞

xn = x.

Let ϵ > 0. Since lim supn→∞ xn = x, there exists n1 ∈ N such that x − ϵ < supk≥n xk < x + ϵ. Similarly,
there exists n2 ∈ N such that x − ϵ < infk≥n xk < x + ϵ. Take n∗ = max{n1, n2}. Since supk≥n xk is
decreasing in n, we have supk≥n∗ xk < x+ ϵ. Since infk≥n xk is increasing in n, we have infk≥n∗ xk > x− ϵ.
Therefore, for all l ≥ n∗,

x− ϵ < inf
k≥n∗

xk ≤ xl ≤ sup
k≥n∗

xk < x+ ϵ.
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