Econ 703 TA Note 12

Chia-Min Wei *

September 12, 2025

1 Separating Hyperplane Theorem

Definition 1.1 (Hyperplane): Let $v \in \mathbb{R}^n$ and $r \in \mathbb{R}$. The hyperplane $\mathcal{H}(v,r) \subset \mathbb{R}^n$ is defined to be the set

$$\mathcal{H}(v,r) := \{ x \in \mathbb{R}^n : v \cdot x = r \}.$$

A hyperplane separates the whole space into two closed half-spaces:

$$\mathcal{H}_{+}(v,r) := \{x \in \mathbb{R}^{n} : v \cdot x \ge r\}$$

$$\mathcal{H}_{-}(v,r) := \{x \in \mathbb{R}^{n} : v \cdot x \le r\}.$$

The intersection of the two closed half-spaces is exactly the hyperplane. The interior of the two closed half-spaces are called the **open half-spaces**:

$$\mathcal{H}^{o}_{+}(v,r) \coloneqq \{x \in \mathbb{R}^{n} : v \cdot x > r\}$$

$$\mathcal{H}^{o}_{-}(v,r) \coloneqq \{x \in \mathbb{R}^{n} : v \cdot x < r\}.$$

Definition 1.2: Let $\mathcal{H}(v,r)$ be a hyperplane in \mathbb{R}^n . Two subsets A and B are **weakly separated** by $\mathcal{H}(v,r)$ if A lies in one closed half-space and B lies in the other. Namely, either one of the two cases hold:

- 1. $A \subset \mathcal{H}_+(v,r)$ and $B \subset \mathcal{H}_-(v,r)$.
- 2. $A \subset \mathcal{H}_{-}(v,r)$ and $B \subset \mathcal{H}_{+}(v,r)$.

Definition 1.3: Let $\mathcal{H}(v,r)$ be a hyperplane in \mathbb{R}^n . Two subsets A and B are **strictly separated** by $\mathcal{H}(v,r)$ if A lies in one open half-space and B lies in the other. Namely, either one of the two cases hold:

- 1. $A \subset \mathcal{H}^o_+(v,r)$ and $B \subset \mathcal{H}^o_-(v,r)$.
- 2. $A \subset \mathcal{H}_{-}^{o}(v,r)$ and $B \subset \mathcal{H}_{+}^{o}(v,r)$.

Theorem 1.1 (Separating Hyperplane Theorem): Let A and B be two closed disjoint convex sets in \mathbb{R}^n . Then there exists a hyperplane $\mathcal{H}(v,r)$ that weakly separates A and B. Moreover, if at least one of A or B is compact, then there exists a hyperplane that strictly separates the two.

^{*}This TA note is based on Prof. John Kennan's math camp lecture taught in 2025 at UW-Madison. All errors are mine.

2 Blackwell Sufficient Condition

Let $X \subset \mathbb{R}^n$. We will let B(X) denote the set of all bounded functions defined on X. For any bounded function f on X, the number

$$||f|| := \sup\{|f(x)| : x \in X\}$$

exists. Note that for any f and g in B(X), f-g is still in B(X). Therefore,

$$||f - g|| = \sup\{|f(x) - g(x)| : x \in X\}$$

is well-defined. One can check that $d(f,g) \coloneqq \|f-g\|$ is indeed a metric on B(X). This makes $(B(X),\|\cdot\|)$ a metric space. We will write $f \le g$ if $f(x) \le g(x)$ for all $x \in X$.

Theorem 2.1 (Blackwell's Sufficient Condition for a Contraction): Let $T:(B(X),\|\cdot\|)\to (B(X),\|\cdot\|)$ be a mapping satisfying

- (i) (Monotonicity): $f, g \in B(X)$ and $f \leq \text{implies } T(f) \leq T(g)$.
- (ii) (Discounting): There exists some $\beta \in (0,1)$ such that

$$[T(f+a)] \le T(f) + \beta a$$

for all $f \in B(X)$, $a \ge 0$.

Then, T is a contraction mapping on B(K) with modulus β .

Proof. Let $f, g \in B(X)$, and write $a = \|f - g\|$. Note that $f + a \ge g$. By monotonicity, $T(f + a) \ge T(g)$. By discounting, $T(f) + \beta a \ge T(f + a) \ge T(g)$. We then have $T(g) - T(f) \le \beta a$. Similarly, $T(f) - T(g) \le \beta a$. Combining the two, we have $\|T(f) - T(g)\| \le \beta a = \beta \|f - g\|$.