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1 Linear Independence and Basis

Definition 1.1 (Linear Independence): Let V' be a vector space and S = {vy,...,v,} C V. We
say that S is linearly dependent if there exists {c;} C R not all 0 such that

n
E ;U = 0.
i=1

If S is not linearly dependent, we say that it is linearly independent.

Definition 1.2 (Spanning): Let V be a vector space and S = {v1,...,v,} C V. We say that S spans
V if for all v € V, there exists {a;} C R such that

n
v = E ;5.
i=1

Example 1.1: In V = R? {(1,0),(1,1)} is linearly independent. On the other hand, {(1,1),(2,2)} is
linearly dependent. {(1,0),(1,1)} spans R? while {(1,1),(2,2)} doesn’t.

Definition 1.3 (Basis): Let V be a vector space. B = {b1,...,b,} is called a basis of V' if
(i) B is linearly independent.
(ii) B spans V.

Example 1.2: {(1,1),(1,0)} is a basis of R?.

Theorem 1.1: Let B be a basis of V. Any v € V can be written as a unique linear combination of
vectors in B.

Definition 1.4 (Vector Representation): Let V be a vector space and B be a basis of it. For any
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veV, sayv= Z?:l a;b;, define the vector representation of v to be the n x 1 real vector

vlg=[a1 --- an]T.

Theorem 1.2: Suppose a finite set B is a basis of V. Then

1. Any basis of V' has the same number of elements as 5. Such number is called the dimension
of V, denoted by dim(V').

2. Any linearly independent set of vectors S with |S| = dim(V) is a basis of V.
3. Any set of vectors S with |S| > dim(V') is linearly dependent.

4. Any set of vectors S that spans V satisfies |\S| > dim(V).

2 Linear Transformation and Matrix Representation

Definition 2.1 (Linear Transformation): Let V and W be vector spaces. We say that a function
T:V — W is a linear transformation if

1. For all v1,v9 € V, T'(v1 +v2) = T(v1) + T(ve).
2. Forall a e R,v € V, T(av) = aT(v).

Let B={by,...,b,} beabasisof V. f T : V — W is a linear transformation, then T is fully characterized
by T(b1),...,T(b,): For any v € V, since B is a basis, there exists o;’s such that v = >" | a;v;. We then
have

T(v) =Y oT(b).
i=1

Definition 2.2 (Matrix Representation): Let T : V' — V be a linear transformation and let
B ={by,....,b,} be a basis of V. Suppose for all j,

T(bj) = Z Oéijbi.
=1

The matrix representation of T' under B, denote by [Tz is the n by n matrix with its (i,5) element
being Qjj.

Example 2.1: Let B = {(1,0),(0,1)} and B’ = {(1,0),(1,1)}. Define T : R?> — R? by T(z) = (21 +

22, 221 + 212).
me=[y 3 me =[]

Theorem 2.1: Let V' be a vector space and B = {by,...,b,} a basis. Let T : V. — V be a linear



transformation. For any v € V|

[T(v)]s = [T]5[v]s-

A particularly useful basis for R™ is the standard basis: & = {ej,es,...,e,}. For any vector v =

o

vn] T € R™, [v]¢ = v. By the above theorem,

T(v) = [T(v)]e = [Tle[v]e = [T]ev.

Therefore, any linear transformation 7" on R™ is essentially a matrix.

3 Eigenvalues, Eigenvectors and Characteristic Polynomial

Since any linear transformation T is essentially a matrix, our further discussion on eigenvalues and eigen-
vectors will be based on matrices.

Definition 3.1: Let A € R"*™. We say that A € R is an eigenvalue of A if there exists v € R™ and
v # 0 such that

Av = .

It is equivalent to saying that there exists v # 0 such that (A — Al,)v = 0. Any v that satisfies
Av = M is called an eigenvector of A corresponding to the eigenvalue .

Recall the following result:

1.

= 88

Theorem 3.1: For M € R"*", the following are equivalent:

M is invertible, i.e., M ! exists.
Mv=0 = v=0.

M’s column vectors form a basis of R"™.
M’s row vectors form a basis of R"™.

det(M) # 0.

This gives us the following characterization of an eigenvalue of a square matrix A.

Theorem 3.2: Let A € R"*™. X\ € R is an eigenvalue of A if and only if det(4A — AI) = 0.

Definition 3.2 (Characteristic Polynomial): The characteristic polynomial of A € R™*™ is defined
as pa(z) = det(A — zI).

Therefore, A is an eigenvalue of A if and only if it is a root of pa(z).



4 Diagonalization

Definition 4.1: A square matrix A € R™*" is said to be diagonalizable if there exists an invertible
P and a diagonal D such that
A=PDpP'.

Let P be a n x n matrix with its column vectors {vy, ..., v, } being the eigenvectors of A € R"*". Then

AP:A[Ul vn]:[Avl Avn]
:P\lvl An”n]
N OO - 0
0 Ao
:[’Ul e vn} :
0 0 - \,
= PD.

If additionally, P is invertible, then A = PDP~!. Together with Theorem 3.1, this gives us the following
result:

Theorem 4.1: A square matrix A € R"*" is diagonalizable if and only if there exists a set of
eigenvectors of A, {v1,...,v,}, that is a basis of R™.

5 Symmetric Matrices

Theorem 5.1 (Spectral Theorem): Let A € R™"*™ be a symmetric matrix. Then A is diagonalizable
by an orthonormal matrix. That is, there exists P and a diagonal matrix D such that

A=PDPT, PT=p!

where the diagonal entries of D are the eigenvalues of A.

Definition 5.1 (Positive Definite): A symmetric matrix A € R"*" is called
e positive (semi-)definite if vTAv > (>)0 for all v € R% v # 0.
e negative (semi-)definite if vTAv < (<)0 for all v € R% v # 0.

o indefinite if vTAv < 0,uTAu > 0 for some u,v € R2.

Theorem 5.2: A symmetric matrix A € R™"*" is
e positive (semi-)definite if all of its eigenvalues are > (>)0.
o negative (semi-)definite if all of its eigenvalues are < (<)0.

o indefinite if some eigenvalues < 0 while some eigenvalues > 0.

Proof. We prove the case when A is positive definite. By the Spectral Theorem, we can write A = PDPT,
where D is a diagonal matrix and the diagonal entries are eigenvalues of A, A1, ..., A,,. (The eigenvalues may



repeat.) For any v € Vv # 0,
vTAv = vTPDPTy = (PTv)TD(PTv).

Write uw = PTv. Then

n
vTAv =uTDu = Z Nz,
i=1
Suppose all \;’s are positive. For all v # 0, since PT is invertible, u = PTv = (uy,...,uy) IS nonzero.
Therefore,
n
vTAv = Z Nu? > 0.
i=1
Suppose A is positive definite. For v = (0,0,..., 1 ,0,...,0) € R", since PT is invertible, there exists v # 0
qth
such that PTv = u. Therefore,
n
A = Z)\Zuf =vTPv > 0.
i=1

Since the argument holds for all 7, A; > 0 for all 1 <i < n. O
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