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1 Linear Independence and Basis

Definition 1.1 (Linear Independence): Let V be a vector space and S = {v1, ..., vn} ⊂ V . We
say that S is linearly dependent if there exists {αi} ⊂ R not all 0 such that

n∑
i=1

αivi = 0.

If S is not linearly dependent, we say that it is linearly independent.

Definition 1.2 (Spanning): Let V be a vector space and S = {v1, ..., vn} ⊂ V . We say that S spans
V if for all v ∈ V , there exists {αi} ⊂ R such that

v =

n∑
i=1

αivi.

Example 1.1: In V = R2, {(1, 0), (1, 1)} is linearly independent. On the other hand, {(1, 1), (2, 2)} is
linearly dependent. {(1, 0), (1, 1)} spans R2, while {(1, 1), (2, 2)} doesn’t.

Definition 1.3 (Basis): Let V be a vector space. B = {b1, ..., bn} is called a basis of V if

(i) B is linearly independent.

(ii) B spans V .

Example 1.2: {(1, 1), (1, 0)} is a basis of R2.

Theorem 1.1: Let B be a basis of V . Any v ∈ V can be written as a unique linear combination of
vectors in B.

Definition 1.4 (Vector Representation): Let V be a vector space and B be a basis of it. For any
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v ∈ V , say v =
∑n

i=1 αibi, define the vector representation of v to be the n× 1 real vector

[v]B =
[
α1 · · · αn

]⊺
.

Theorem 1.2: Suppose a finite set B is a basis of V . Then

1. Any basis of V has the same number of elements as B. Such number is called the dimension
of V , denoted by dim(V ).

2. Any linearly independent set of vectors S with |S| = dim(V ) is a basis of V .

3. Any set of vectors S with |S| > dim(V ) is linearly dependent.

4. Any set of vectors S that spans V satisfies |S| ≥ dim(V ).

2 Linear Transformation and Matrix Representation

Definition 2.1 (Linear Transformation): Let V and W be vector spaces. We say that a function
T : V → W is a linear transformation if

1. For all v1, v2 ∈ V , T (v1 + v2) = T (v1) + T (v2).

2. For all α ∈ R, v ∈ V , T (αv) = αT (v).

Let B = {b1, ..., bn} be a basis of V . If T : V → W is a linear transformation, then T is fully characterized
by T (b1), ..., T (bn): For any v ∈ V , since B is a basis, there exists αi’s such that v =

∑n
i=1 αivi. We then

have

T (v) =

n∑
i=1

αiT (bi).

Definition 2.2 (Matrix Representation): Let T : V → V be a linear transformation and let
B = {b1, ..., bn} be a basis of V . Suppose for all j,

T (bj) =

n∑
i=1

αijbi.

The matrix representation of T under B, denote by [T ]B is the n by n matrix with its (i, j) element
being aij .

Example 2.1: Let B = {(1, 0), (0, 1)} and B′ = {(1, 0), (1, 1)}. Define T : R2 → R2 by T (x) = (x1 +
2x2, 2x1 + 2x2).

[T ]B =

[
1 2
2 2

]
, [T ]B′ =

[
−1 −1
2 4

]
.

Theorem 2.1: Let V be a vector space and B = {b1, ..., bn} a basis. Let T : V → V be a linear
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transformation. For any v ∈ V ,

[T (v)]B = [T ]B[v]B.

A particularly useful basis for Rn is the standard basis: E = {e1, e2, ..., en}. For any vector v =[
v1 · · · vn

]⊺ ∈ Rn, [v]E = v. By the above theorem,

T (v) = [T (v)]E = [T ]E [v]E = [T ]Ev.

Therefore, any linear transformation T on Rn is essentially a matrix.

3 Eigenvalues, Eigenvectors and Characteristic Polynomial
Since any linear transformation T is essentially a matrix, our further discussion on eigenvalues and eigen-
vectors will be based on matrices.

Definition 3.1: Let A ∈ Rn×n. We say that λ ∈ R is an eigenvalue of A if there exists v ∈ Rn and
v ̸= 0 such that

Av = λv.

It is equivalent to saying that there exists v ̸= 0 such that (A − λIn)v = 0. Any v that satisfies
Av = λv is called an eigenvector of A corresponding to the eigenvalue λ.

Recall the following result:

Theorem 3.1: For M ∈ Rn×n, the following are equivalent:

1. M is invertible, i.e., M−1 exists.

2. Mv = 0 =⇒ v = 0.

3. M ’s column vectors form a basis of Rn.

4. M ’s row vectors form a basis of Rn.

5. det(M) ̸= 0.

This gives us the following characterization of an eigenvalue of a square matrix A.

Theorem 3.2: Let A ∈ Rn×n. λ ∈ R is an eigenvalue of A if and only if det(A− λI) = 0.

Definition 3.2 (Characteristic Polynomial): The characteristic polynomial of A ∈ Rn×n is defined
as pA(x) = det(A− xI).

Therefore, λ is an eigenvalue of A if and only if it is a root of pA(x).
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4 Diagonalization

Definition 4.1: A square matrix A ∈ Rn×n is said to be diagonalizable if there exists an invertible
P and a diagonal D such that

A = PDP−1.

Let P be a n× n matrix with its column vectors {v1, ..., vn} being the eigenvectors of A ∈ Rn×n. Then

AP = A
[
v1 · · · vn

]
=

[
Av1 · · · Avn

]
=

[
λ1v1 · · · λnvn

]
=

[
v1 · · · vn

]

λ1 0 · · · 0
0 λ2

...
0 0 · · · λn


= PD.

If additionally, P is invertible, then A = PDP−1. Together with Theorem 3.1, this gives us the following
result:

Theorem 4.1: A square matrix A ∈ Rn×n is diagonalizable if and only if there exists a set of
eigenvectors of A, {v1, ..., vn}, that is a basis of Rn.

5 Symmetric Matrices

Theorem 5.1 (Spectral Theorem): Let A ∈ Rn×n be a symmetric matrix. Then A is diagonalizable
by an orthonormal matrix. That is, there exists P and a diagonal matrix D such that

A = PDP ⊺, P ⊺ = P−1

where the diagonal entries of D are the eigenvalues of A.

Definition 5.1 (Positive Definite): A symmetric matrix A ∈ Rn×n is called

• positive (semi-)definite if v⊺Av > (≥)0 for all v ∈ R2, v ̸= 0.

• negative (semi-)definite if v⊺Av < (≤)0 for all v ∈ R2, v ̸= 0.

• indefinite if v⊺Av < 0, u⊺Au > 0 for some u, v ∈ R2.

Theorem 5.2: A symmetric matrix A ∈ Rn×n is

• positive (semi-)definite if all of its eigenvalues are > (≥)0.

• negative (semi-)definite if all of its eigenvalues are < (≤)0.

• indefinite if some eigenvalues < 0 while some eigenvalues > 0.

Proof. We prove the case when A is positive definite. By the Spectral Theorem, we can write A = PDP ⊺,
where D is a diagonal matrix and the diagonal entries are eigenvalues of A, λ1, ..., λn. (The eigenvalues may
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repeat.) For any v ∈ V, v ̸= 0,

v⊺Av = v⊺PDP ⊺v = (P ⊺v)⊺D(P ⊺v).

Write u = P ⊺v. Then

v⊺Av = u⊺Du =

n∑
i=1

λiu
2
i .

Suppose all λi’s are positive. For all v ̸= 0, since P ⊺ is invertible, u = P ⊺v = (u1, ..., un) is nonzero.
Therefore,

v⊺Av =

n∑
i=1

λiu
2
i > 0.

Suppose A is positive definite. For u = (0, 0, ..., 1︸︷︷︸
ith

, 0, ..., 0) ∈ Rn, since P ⊺ is invertible, there exists v ̸= 0

such that P ⊺v = u. Therefore,

λi =

n∑
i=1

λiu
2
i = v⊺Pv > 0.

Since the argument holds for all i, λi > 0 for all 1 ≤ i ≤ n.
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