
ECON 703 TA Note 1
Chia-Min Wei

August 14, 2025

1 General Information

Name Website Email Office

Lecturer John Kennan users.ssc.wisc.edu/~jkennan/ jkennan@ssc.wisc.edu SSC 6434

TA Chia-Min Wei chiaminwei.com cwei69@wisc.edu SSC 7435

Dates Lectures TA Sections Lecturer’s OH TA’s OH

Aug 13 - 15

9:55 - 11:50 AM
in SSC 6116

& 4:30 - 6:45 PM
in SSC 6203

none
1:30 - 3:00 PM

(Mon)
in SSC 6434

2:30 - 4:00 PM
in SSC 7435

Aug 18 - 22 none
9:55 - 10:45 AM

& 11:00 - 11:50 AM
in SSC 6116

none 2:30 - 4:00 PM

Aug 21 (Thu)
Midterm:

4:30 - 6:45 PM
in SSC 6203

9:55 - 10:45 AM
& 11:00 - 11:50 PM

in SSC 6116
none 2:30 - 4:00 PM

Aug 25 - Sep 2 4:30 - 6:45 PM
in SSC 6203

9:55 - 10:45 AM
& 11:00 - 11:50 AM

in SSC 6116

1:30 - 3:00 PM
(Mon)

in SSC 6434

2:30 - 4:00 PM
(Fri)

Sep 4 - 16
5:30 - 6:45 PM
(Tue & Thu)
in SSC 6203

8:50 - 9:40 (Fri)
in SSC 6113

& 9:55 - 10:45 (Fri)
in SSC 6109

1:30 - 3:00 PM
(Mon)

in SSC 6434

2:30 - 4:00 PM
(Fri)

Sep 18 (Thu)
Final:

5:30 - 6:45
in SSC 6203

none none none
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Remark:

1. There are no lectures nor discussion sections on weekends. If no specific day is stated on the
schedule, the event takes place on all weekdays.

2. There will be no lectures nor discussion sections on Labor Day (Sep 1).

3. There will be no TA discussion sections on August 28 and August 29 due to TA training.

4. All materials would be posted on canvas. My handouts would also be posted on my website.

5. The location for TA office hours next week would be announced later.

2 Preliminaries from Logic

2.1 Statements and Predicates
In classical logic, a statement is an expression that is either true or false, with no middle ground. For
example, the following is a true statement:

Prof. John Kennan is the instructor for the math camp in 2025.

The following is a false statement:

Prof. John Kennan is the instructor for the math camp every year.

In mathematics, when we are asked to prove a statement, our goal is to show that it is true.
A predicate is an expression such as “is the instructor for the math camp in 2025.” By itself, a predicate

is not a statement—it is neither true nor false until we specify the object(s) it refers to. For example,
“Prof. John Kennan is the instructor for the math camp in 2025” is obtained by applying the predicate to
a particular person, producing a statement that can be evaluated as true or false.

We often use the notation P (x) to represent a predicate, where x is the variable we “fill in.” If

P (x) = “x is the instructor for the math camp in 2025,”

then

P (Prof. John Kennan) = “Prof. John Kennan is the instructor for the math camp in 2025.”

A predicate can have more than one variable. For example,

P (x, y) = “x is y’s father.”

This becomes a statement only when both x and y are specified.

2.2 Quantifiers
A quantifier must always be followed by a variable (or variables) and a predicate that involves that variable
(those variables). Together, they form a complete statement. The most common quantifiers are ∀ (for all),
∃ (exists) and ∃! (exists exactly one).

• ∀x P (x) — “for all x, P (x) is true”

• ∃x P (x) — “there exists x such that P (x) is true”

• ∃!x P (x) — “there exists exactly one x such that P (x) is true”

• ̸ ∃x P (x) — “there does not exist any x such that P (x) is true”

A quantifier followed by two variables:

• ∀xy P (x, y) — “for all x and y, P (x, y) is true”
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2.3 Logical Connectives
Logical connectives are symbols or words used to combine one or more statements into a more complex
statement.

• P ∧Q — “P and Q are both true”

• P ∨Q — “P or Q is true”

• P =⇒ Q — “if P is true, then Q must be true”

• P ⇐⇒ Q — “P is true if and only if Q is true” (equivalence)

• ¬P — “not P”

3 Proofs
Here are some rules of thumb and strategies to keep in mind when writing proofs.

Work backwards from what you want. The ultimate goal is to derive the conclusion. Look at the
conclusion and ask what you need to prove just before the conclusion. Then you can treat this line as if it
were your goal.

Work forwards from what you have. When you are starting a proof, look at the premises; later,
look at the sentences that you have derived so far. These will tell you what your options are.

3.1 Direct Proof
Let us prove a classical theorem directly.

Theorem 1 (AM-GM Inequality): For all a, b ≥ 0,

a+ b

2
≥

√
ab.

Proof. Since a, b > 0, both the LHS and RHS are positive. Therefore, the statement(
a+ b

2

)2

≥ ab

leads to the final statement. (
a+ b

2

)2

≥ ab ⇐= (a+ b)2 ≥ 4ab

⇐= (a+ b)2 − 4ab ≥ 0

⇐= a2 + b2 − 2ab ≥ 0

⇐= (a− b)2 ≥ 0.

Since the square of any real number is always non-negative, this inequality holds true, completing the
proof.

3.2 Proof by Contradiction
Sometimes it is hard to prove directly that a statement is true. In such situations, it may be better to
assume that the statement is false and show that this leads to a contradiction. This method is called proof
by contradiction.
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Theorem 2: There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers, denoted a1, ..., an. Consider the number a =
a1 × a2 × ...× an + 1. The number a is not divisible by any of the primes. We thus conclude that a is itself
a prime number. A contradiction.

Theorem 3:
√
5 is not a rational number.

Proof. Assume the contrary that
√
5 is indeed a rational number. Then there exists a, b ∈ N such that

(a/b)2 = 5 with no common divisors other than 1. Such integers a and b can be chosen because any fraction
can be reduced to its lowest terms. Rewriting we get

a2 = 5b2 =⇒ a2 is divisible by 5
=⇒ a is divisible by 5 (since 5 is a prime)
=⇒ a2 is divisible by 25
=⇒ b = a2/5 is divisible by 5.

But then 5 is a common divisor of both a and b, a contradiction.

3.3 Proof by Induction
We can prove statements asserting “for all n ∈ N, n ≥ a, P (n) is true,” by

1. First showing that P (a) is true.

2. Then, assuming P (n) is true, we use this assumption to prove P (n+ 1) is true.

By doing this, it follows automatically that the given statement is true for all n ≥ a. In step (2), one can
also assume that P (k) is true for all k = 1, ..., n − 1, n, and use this stronger assumption to establish that
the given statement is true.

Theorem 4 (AM-GM Inequality for n = 2k): For all n = 2k, k ∈ N,

a1 + a2 + ...+ an
n

≥ (a1 × a2 × ...× an)
1/n,

where a1, ..., an ≥ 0.

Proof. Prove by induction on k.

1. Base case k = 1: Proved in Theorem 1.

2. Inductive step: Now assume that the statement holds for k. We want to show that the statement is
also true for k + 1. Let a1, ..., a2k+1 ≥ 0. Observe that

a1 + ...+ a2k+1

2k+1
=

1

2

(
a1 + ...+ a2k

2k
+

a2k+1 + ...+ a2k+1

2k

)
≥ 1

2

(
(a1 × ...× a2k)

1/2k + (a2k+1 × ...× a2k+1)1/2
k
)

≥
{
(a1 × ...× a2k)

1/2k × (a2k+1 × ...× a2k+1)1/2
k
}1/2

= (a1 × a2...× a2k+1)
1/2k+1

.

We applied the induction hypothesis to obtain the first inequality, and then used the AM-GM inequality
for n = 2 to establish the second inequality.

4



Theorem 5 (Tiling with Trominoes): For integer n ≥ 1, a 2n × 2n chessboard with any single
unit square removed can be tiled completely by L− shaped trominoes (each tromino covers three unit
squares in an L shape).

Figure 1 shows an L-shaped tromino and how a 4× 4 chessboard with one square removed can be tiled
using it.

Proof. Prove by induction on n.

1. Base case n = 1: A 2× 2 chessboard with any unit square removed is exactly the shape of a L-shaped
tromino.

2. Inductive step: Assume the statement holds for n ≥ 1. We prove the statement for n + 1. Partition
the 2n+1 × 2n+1 board into four quadrants (northwest, northeast, southwest, southeast), each of size
2n × 2n. Therefore, there is exactly one quadrant with a missing square. Place one L-shaped tromino
at the center so that it covers one square in each of the three quadrants that do not contain the
original missing square. This creates a single missing square in each quadrant, allowing us to apply
the induction hypothesis to each. Thus, the entire board can be tiled.

(a) A L-shaped tromino. (b) A 4×4 chessboard with one square removed tiled.

Figure 1: Tiling with Trominoes

3.4 Proof by Separating Cases
Sometimes it is helpful to break the problem into several simpler cases and prove the statement separately
for each one.

Theorem 6: There exists a, b that are not rational such that ab is rational.

Proof. Consider a = b =
√
2. We seperate two cases.

1. ab is rational: Since
√
2 is not rational, the statement is true.

2. ab is not rational: Observe that (ab)
√
2 = 2. Since both ab and

√
2 are not rational, the statement is

true.

Since the statement is true in either cases, the proof is done.
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